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1.   The Greek Mathematics: Demonstrative Geometry 

 

Characteristic of Greek Mathematics

Pythagorean Mathematics 

The Three Famous Problems 

Euclid's<Elements> 

Greek Mathematics After Euclid 

 

Characteristic of Greek Mathematics 

In the 600 B.C. Mathematics was focused as a study and a science in the ancient Greek as a 
matter of course in China, India and Babylonia and to learn Geometry in Egypt. Thales, 
Pythagoras and Plato in Greek studied in Egypt and joined with Egypt culture Greek 
produced achievements at mathematics formed a term of now civilization accepting the 
Egypt culture. That is "Elements" of Euclid, "The Theory of conic sections" of 
Apollonius, "Arithmetica" of Diophantus and many research achievements of Archimedes. 
Many scholar represented as Aristotle. Plato focused only philosophy and mathematics. The 
story, Plato wrote "NO one knows Geometry, No admission" at the entrance to a hall, is 
famous. Euclid is known affected by Aristotle and plato. His "Elements" is the first arranged 
and systematized book logically and had been used as a textbook toward the end of the 
1800's in Europe. This book showed the closed to the present mathematics toward 300 B.C. 
demonstrating a proposition from the axiom in the view of today, this had many defects, but 
this had affected after the that time. However, Greek mathematics was remarkable 
theoretically, but unremarkable in the field of number and calculus. The research in Algebra 
of Diophantus was remarkable. After that time, Europe had accepted arithmetic and Algebra 
from India and east countries until 900's. 

Pythagorean mathematics 

The Pythagorean philosophy rested on the assumption what whole number is the cause of the 
various qualities of man and matter.  This led to an exaltation and study of number 
properties, and arithmetic (considered as the theory of numbers), along with geometry, 
music, and spherics (astronomy), constituted the fundamental liberal arts of the Pythagorean 
program of study. 
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Because Pythagoras' teaching was entirely oral, and because of the brotherhood's custom of 
referring all discoveries back to the revered founder, it is now difficult to know just which 
mathematical findings should be credited to Pythagoras himself and which to other members 
of the fraternity. 

Pythagorean Arithmetic:  Pythagoras and his followers, in conjunction with the 
fraternity's philosophy, took the first steps in the development of number theory, and at the 
same time laid much of the basis of future number mysticism.  Amicable, or friendly, 
numbers.   Two numbers are amicable number if each is the sum of the proper divisors of the 
other.  For example, 284 and 220, constituting the pair ascribed to Pythagoras, are 
amicable.  They are the perfect , deficient , and abundant numbers.  A number is perfect if it 
is the sum of its proper divisors, deficient if it exceeds the sum of its proper divisors, 
and abundant if it is less than the sum of its proper divisors.  So God created the world in 
six days, a perfect number, since 6= 1 + 2 + 3. 

So people those times told fortunes with that number and they used an amulet to avert evils, 
the figurate numbers were found by the Pythagorean. 

These numbers, considered as the number of dots in certain geometrical configurations, 
represent a link between geometry and arithmetic. 

 

As a last and very remarkable discovery about numbers, made by the Pythagoreans, we 
might mention the dependence of musical intervals upon numerical ratios.  The Pythagoreans 
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found that for strings under the same tension, the lengths should be 2 to 1 for the octave 3 to 
2 for the fifth, and 4 to 3 for the fourth.   These results, the first recorded facts in 
mathematical physics, led the Pythagoreans to initiate the scientific study of musical scales. 

Pythagorean Theorem and Discovery of Irrational Magnitudes:  Pythagoras says that the 
square on the hypotenuse of a right triangle is equal to the sum of the squares on the two 
legs. 

Since Pythagoras' time, many different proofs of the Pythagorean theorem have been 
supplied.  In the second edition of his book, The Pythagorean Proposition, E.S.  Loomis 
has collected and classified 370 demonstrations of this famous theorem. 

 

Roughly saying the Pythagorean theorem is about width but acctually about the length of 
three sides to make a right triangle. 

The problem of finding integers a, b, c that can represent the legs and hypotenuse of a right 
triangle.  A triple of numbers of this sort is known as aPythagorean triple. 

By this theorem there exist incommensurable line segments - that is, line segments having no 
common unit of measure.  Thediscovery of irrational number is the milestone in mathematics 
history.   But the discovery ran counter to the Pythogorean philosophy - 'everything is 
decided by integer.' 

The discovery of the existence of irrational numers was surprising and disturbing to the 
Pythagoreans. 

The Regular Solids:  A polyhedron is said to be regular if its faces are congruent regular 
polygons and if its polyhedral angles are all congruent. 

There is the tetrahedron with four triangular faces, the hexahedron, or cube, with six square 
faces, the octahedron with eight triangular faces, the dodecahedron with twelve pentagonal 
faces, and the icosahedron with twenty triangular faces .  Plato mystically associates fire, 
earth, air, universe, and water to each regular solid. 
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The Three Famous Problems 

The first three centuries of Greek mathematics, commencing with the initial efforts at 
demonstrative geometry by Thales about 600 B.C. and culminating with the remarkable 
 Elements of Euclid about about 300 B.C.  One can notice three important and distinct lines 
of development during the first 300 years of Greek mathematics.  First, we have the  
development of the material that ultimately was organized into the Elements. 

There is the development of notions connected with infinitesimals and with limit and 
summation processes. The third line of development is that of higher geometry, or the 
geometry of curves other than the circle and straight line, and of surfaces other than the 
sphere and plane.  Curiously enough, most of this higher geometry originated in continued 
attempts to solvethree now famous construction problems.   By virtue of this challenge, the 
development and creation of new mathematics were made. 

Duplication, Trisection, and Quadrature:  The Greeks regarded logical thinking very highly. 
 They considered hight system of knowledge as important: not practical value. Unexpectedly 
they couldn't solve easy problems Typical examples were duplication, trisection and 
quadrature. 

1. The duplication of the cube, or the problem of constructing the edge of a cube 
having twice the volume of a given cube. 

2. The trisection of an angle, or the problem of dividing a given arbitrary angle into 
three equal parts. 

3. The quadrature of the circle, or the problem of constructing a square having an area 
equal to that of a given circle. 
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People should solved these three problems by using unmarked straightedges and compasses. 
The impossibility of the three constructions, under the self-imposed limitation that only the 
straightedge and compasses could be used, was not established until the nineteenth century, 
more than 2000 years after the problems were first conceived. 

The energetic search for solutions to these three problems profoundly influenced Greek 
geometry and led to many fruitful discoveries, such as that of the conic sections, many cubic 
and quartic curves, and several transcendental curves.  A much later outgrowth was the 
development of portions of the theory of equations concerning domains of rationality, 
algebraic numbers, and group theory. 

A History of ¥ð:   '¥ð' is used to calculate the area of a circle which is called ratio of 
circumference of circle to its diameter. 

 

¥ð : the ratio of the circumference of a circle to its diameter 

l : pheriphery of a circle 

2r : diameter of a circle. 

'¥ð'is fixed to any circles. 

The man who used '¥ð' for the first time was Euler, Leonhard. If we, actually, want to 
calculate the area of a circle, we should know the value of '¥ð'. 

Unable to reckon the accurate value of '¥ð' (nobody can do that), Archimedes got 
the approximate value of '¥ð'. 

Starting from the regular inscribed and circumscribed six-sided polygons, Archimedes drew 
regular inscribed 96-sided polygons to the circle, and he drew regular circumscribed 96-
sided polygons to it. 

Then, the circumference of a circle is longer than that of the regular inscribed 96 - sided 
plygons and is smaller than that of the regular circumscribed 96 - sided polygons.Thus,  

(circumference of an inscribed 96-side polygons) < 2¥ðr (circumference of a circumscribed 
96 - sided polygons) 
3¡¤1/7 < ¥ð < 3¡¤10/71 

This value is quite accurate ¡æ 3.14084 < ¥ð <3.142858 
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Archimedes used the approximate value of '¥ð' as 3.14. 

 

Approximate value of '¥ð'. 

Ahmes'(a.1650 B.C) Papyrus ¥ð ¡Ö 3.16 

Arithmetic in Nine section ¥ð ¡Ö 3 

Archimedes ¥ð ¡Ö 3.14 

Tsu Chung - chih(430-501) ¥ð ¡Ö 3.1415929

 

Eucliod's <Elements> 

Although Euclid was the author of at least ten works (fairly complete texts of five of these 
have come down to us), his reputation rests mainly on his Elements.  It appears that this 
remarkable work immediately and completely superseded all previous Elements; in fact, no 
trace remains of the earlier efforts.  As soon as the work appeared, it was accorded the 
highest respect, and from Euclid's successors on up to modern times, the mere citation of 
Euclid's book and proposition numbers was regarded as sufficient to identify a particular 
theorem or construction.  No work, except the Bible, has been more widely used, edited, or 
studied, and probably no work has exercised a greater influcnce on scientific thinking.  Over 
one thousand editions of Euclid's Elements have appeared since the first one printed in 
1482; for more than two millennia, this work has dominated all teaching of geometry. 

Contrary to widespread impressions, Euclid's Elements is not devoted to geometry alone, 
but contains much number theory and elementary (geometric) algebra.  The work is 
composed of thirteen books with a total of 465 propositions.   American high-school plane 
and solid geometry texts contain much of the material found in Books ¥°,¥²,¥³,¥µ,XI, and 
XII. 

Certainly one of the greatest achievements of the early Greek mathematicians was the 
creation of the postulational form of thinking.  In order to establish a statement in a 
deductive system, one must show that the statement is a necessary logical consequence of 
some previously established statements. 

These, in their turn, must be established from some still more previously established 
statements, and so on.  Since the chain cannot be continued backward indefinitely, one must, 
at the start, accept some finite body of statements without proof or else commit the 
unpardonable sin of circularity, by deducing statement A from statement B and then later B 
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from A.  These initially assumed statements are called the postulates, or axioms, of the 
discourse, and all other statements of the discourse must be logically implied by 
them.  Where the statements of a discourse are so arranged, the discourse is said to be 
presented in postulational form. 

So great was the impression made by the formal aspect of Euclid's Elements on following 
generations that the work became a model for rigorous mathematical demonstration. 

It is not certain precisely what statements Euclid assumed for his postulates and axioms, nor, 
for that matter, exactly how many he had, for changes and additions were made by 
subsequent editors.  There is fair evidence, however, that he adhered to the second 
distinction and that he probably assumed the equivalents of the following ten statements, five 
"axioms," or common notions, and five geometric "postulates": 

A1  Things that are equal to the same thing are also equal to one another. 
A2  If equals be added to equals, the wholes are equal. 
A3  If equals be subtracted from equals, the remainders are equal 
A4  Things that coincide with one another are equl to one another. 
A5  The whole is greater than the part. 
P1  It is possible to draw a straight line from any point to any other point. 
P2  It is possible to produce a finite straight line indefinitely in that straight line. 
P3  It is possible to describe a circle with any point as center and with a radius 
 qual to any to finite straight line drawn from the center. 
P4  All right angles are equal to one another. 
P5  If a straight line intersects two straight lines so as to make the interior angles 
 on one side of it together less than two right angles, these straight lines will 
 intersect, if indefinitely produced, on the side on which are the angles which 
 are together less than two right angles. 

 



8 
 

Greek Mathematics after Euclid 

One of the greatest mathematicians of all time, and certainly the greatest of antiquity, was 
Archimedes, showed his typical strict arguments in calculating the area of a figure which 
was surrounded by parabola(curve) and chord (straight line). This way of reckoning provide 
the base of modern integral calculus.  Great was his Knowledge about a circular cylinder and 
a sphere with Euclid and Archimedes in mathematics in 300 B.C. was a great mathematician 
Apollonius (ca. 200 B.C.) argued about <The theory of conic sections> which made him a 
great geometrician. He stated conic sections as cut stains from circular corns. These parts 
were omitted in <Elements> but Apollonius compiled many fields called ¡¸the theory of 
quadratic curve¡¹.  This method reminds us of the analytic geometry. 

 

Archimedes was killed by a roman soldier in 212 B.C.   The Roman Empire conquered many 
city states in Greece and dominated the Mediterranean Sea. But the flower of science that is 
mathematics began to wither.  Rome ruined Greek culture. In mathematics especially, Rome 
didn't obtain good results except quinary. The Roman Empire only assimilate and copy the 
conquered culture of Greece, Egypt and Carthage. Although the pursuit of learning 
weakened, Alexandria was the center of learning and culture then. 

As trade was frequent between the West and the East, people came to need the art of 
navigation so they studied astronomy and trigonometry. Introduced was logistic system 
which represent angle today.   Representative astronomers at those times were Aristarchus 
(280 B.C.)   Eratosthenes and Hipparchus (150 B.C.)  Eratosthenes, working at a library in 
Alexandria, computed the size of earth by measuring altitude of the sun on summer solstice. 

Maybe more distinguished astronomer in Ancient Age, Hipparchus drew up the logistic 
system. He made a kind of table and it is called trigonometric function today and also studied 
spherical astronomy.  <Syntaxis Mathematica> is maybe the best book about astronomy 
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written by Claudius Ptolemy in Alexandria about 150 A.D.  Arabians translated the book 
as <Almagest> which was regarded as a criterional book of astronomy from Copernicus to 
Kepler. Theoretical mathematics of Greece and practical mathematics of the orient coexisted 
at those times. 

The representative mathematicians were Heron (250~150 B.C.) and Diophantus.  The former 
is famous for its 'Heron's formula' referring to the area of a triangle. The latter is 'the father 
of algebra' who studied 'theory of numbers' and equation (primarily linear and quadratic) 
  Pappus wrote <Mathematical collection> about Greek geometry.  Hypatia, doughter of 
annotator Theon was also famous mathematician.  As the Alexandrian School was burned by 
Arabians in 641. After this incident, the glorous and brilliant Greek mathematics disappeared 
in the darkness. 
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2. The Oriental Mathematics : Practical Arithmatic and   
Mensuration 

 

Characteristic of Orient Mathematics 

Babylonian Mathematics 

Egyptian Mathematics 

Marking of Number 

The Egytian Hieroglyphic 

The Babylonian Cuneiform 

The Mayan Numeral System 

The Roman Numeral System 

The Hindu - Arabic Numeral Systern 

 

Characteristic of Orient Mathematics 

In the Nile in Africa, the Tigris and Euphrates in western Asia, the Indus and then the 
Ganges in south-central Asia, and the Hwang Ho and then the Yangtze in eastern Asia, there 
was ancient nations called the ancient 4-civilizations until 2000 B.C. 

The major economic activities of the ancient nations was to manage their farmlands and to 
control their products.  Thus, early mathematics can be said to have originated in certain 
areas of the ancient Orient (the world east of Greece) primarily as a practical science to assist 
in agriculture, engineering, and business pursuits, that is the initial emphasis of the early 
mathematics was on practical arithmetic and mensuration. 

Algebra ultimately evolved from arithmetic and the beginnings of theoretical geometry grew 
out of mensuration. 

However that in all ancient Oriental mathematics one cannot find even a single instance of 
what we today call a demonstration, and one cannot find the reason to get the answer so to 
speak 'Do it this way' then 'Get the answer'. That is, many difference from ancient Greek 
mathematics. 
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Mathematics was one of the essential parts in the ancient civilization.   Today the only record 
is the Egypt and Babylonia's.   Finally, the orient mathematics could not be developed 
because it was a 'living mathematics'. 

  The Babylonians used imperishable baked clay tablets and the Egyptians used stone and 
papyrus, the latter fortunately being long lasting because of the unusually dry climate of the 
region.   But the early Chinese and Indians used very perishable media like bark and 
bamboo.   Thus, although a fair quantity of define information is now known about the 
science and the mathematics of ancient Babylonia and Egypt, very little is known with any 
degree of certainty about these studies in ancient China and India. 

Babylonian Mathematics 

The early Babylonians drew isosceles triangle on wet clay plates with needles.  In this way, 
they made wedge-shaped letters. After making cuneiform they baked the plates to keep them 
for a long time. These plates were excavated at the Dynasty of King Hammurabi's era, about 
1600 B.C.   After deciphering the wedge-shaped letters, we can know that the Babylonians 
used very high system of calculation in commerce and agriculture with the sexagesimal 
positional system. Babylonian geometry is intimately related to practical mensuration.  The 
chief feature of Babylonian geometry is algebraic character. Babylonians already knew the 
solution of quadratic equations and equations of second degree with two unknowns and they 
could also handle equations of the third and fourth degree. Thus the development of algebra 
quickened.  We and undoubtedly owe to the ancient Babylonians our present division of the 
circumference of a circle into 360 equal parts. 
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Egyptian Mathematics 

Using a kind of reed,-papyrus- Egyptians made papers.  About 1650 B.C. in 'Ahmes' 
Papyrus' which was written Ahmes, we can see how to calculate the fraction and the 
superficial measure of farmland. Ancient Egyptians say that the area of a circle is repeatedly 
taken as equal to that of the square of 8/9 of the diameter. They also extracted the volume of 
a right cylinder and the area of a triangle but they handled only a simple equation. 

 

Marking of Number 

Probably the earliest way of keeping a count was by some simple tally method, employing 
the principle of one-to-one correspondence.  In keeping a count on sheep, for example, one 
finger per sheep could be turned under.  Counts could also be maintained by making 
collections of pebbles or sticks, by making scratches in the dirt or on a stone, by cutting 
notches in a piece of wood, or by tying knots in a string. As the way of counting, people 
should learn how to mark the numbers.   Each nation, therefore, used its peculiar marking of 
numbers. The Egyptian Hieroglyphic:   The Egyptian hieroglyphic numeral system is based 
on the scale of 10 and it was used about 3400 B.C. 
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Any number is now expressed by using these symbols additively, each symbol being 
repeated the required number of times. Thus, 

13015=1(104)+3(103)+1(10)+5=  

¡ÝThe babylonian Cuneiform :   This was used from 2000 to 200 B.C. and it simplied the 
marking of numbers using the symbol '-'(minus) 

 

Thus, 38=40-2+  

Sometime between 3000 and 2000 B.C., the ancient Baoyionians evolved a sexagesimal 
system employing the principle of position. 

524,551 = 2(603) + 25(602) + 42(60) + 31 =  

This method is the start of positional numberal system but the babylonians had difficulties 
because there was no '0'(zero) until about 300 B.C. 

¡ÝThe Mayan Numeral System: This Mayan Numeral System has a symbol for '0' and is 
based on vigesimal.   This is written very simply by dots and dashes. 

 

An example of a larger number, written in the vertical Mayan manner, is shown below. 

 

The rule of calculation for complex multiplication and division which are used in primary 
arithmetic was developed in late 15th century. 

The reson why this rule was developed so late is there were no plenty of papers to record on 
(Chinese way of making papers was introduced in Europe after 12th century). They 
used abacus to overcome this difficulty. 
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Our present addition and subtraction patterns, along with the concepts of "carrying over" and 
"borrowing" may have originated in the processes for carrying out these operations on the 
abacus. 

The Roman Numeral System: Numeral system was decimal system or quinary, the 
subtractive principle, in which a symbol for a smaller unit placed before a symbol for a 
larger unit means the difference of the two units, was used only sparingly in ancient and 
medieval times. 

1 5 10 50 10©÷ 500 10©ø 
I V X L C D M 

  Thus, 1944=MDCCCCXXXXIIII 
  1994=MCMXLIV 

This way disabled them from calculating multi-digits number so they used abacus. 

The Hindu-Arabic Numeral System: 1,2,3,4,5,6,7,8,9,0 

  The Hindu-Arabic numeral system is named after the Hindus, who may have invented it, 
and after the Arabs, who transmitted it to western Europe.;  The Persian mathematician al-
Khowarizmi describes such a completed Hindu system used position value or 0(zero)in a 
book of A.D. 825. 

It is not certain when this numeral system transmitted to Europe but this system was used all 
over the Europe about 13th century. 

The dispute between the abacist and the algorist went on.  Finally, the abacus disappeared in 
18th century. 

Our word zero probably comes from the Latinized 
form zephirum of the Arabic sifr, which in turn is a 
translation of the Hindu sunya, meaning "void" of 
"empty." 

By virtue of the symbol of '0' the decimal system was 
established.  And so we can use four operations more 
freely than ever. 

 



15 
 

3. The European Middle Ages Mathematics : Dark Ages of 
 Monastic Mathematics 

 

Characteristic of European Middle Ages Mathematics 

Monastic Mathematics 

Fibonacci and The 13th Century 

The Antagonism of Commercial Against Monastic Mathematics 

Non-European Mathematics 

 Indian Mathematics 

Arabian Mathematics 

 

Characteristic of European Middle Ages Mathematics: 

 Europe had accepted calculus and algebra from India and east counties until 900's. In India 
Aryabhata(475-553) wrote the numeration system and the astronomical observation theory 
on Aryabhattiya(449) in 600's. Arabic camber was invented in India.  Italian Fibonacci 
introduced arabic number go Europe. 

Monastic Mathematics:   

We call the term the black Age from the middle of 400's to 1000's.  In this times, the church 
controlled all the action and thinking of humans.  Thus, there was no research of 
mathematics besides the research by tabbies of Catholic. Of the persons charitably credited 
with playing a role in the history of mathematics during the Dark Ages, we might mention 
the martyred Roman citizen Boethius, the British ecclesiastical scholars Bede and Alcuin, 
and the famous French scholar and churchman Gerbert, who became Pope Sylvester ¥±.  The 
work of Boethius about arithmetic and geometry had been used as a textbook during many 
centuries.  

Gerbert was known to spread Indian - Arabic number without 0 to Europe and also he was 
known to make an abacus, a terrestrial globe, a celestial globe and watch and establish the 
first school at France in Europe. After that time, mathematics in Europe started to progress in 
the end of the middle age and the early part of the Renessance (1100's-1400's).  The 
knowledge in this times was based on not Greek but Islam mathematics. Arabic mathematics 
played an important part Greece (and India) with modern Europe. Europe in 1100's was the 
times of translation.   The superior publication of Greek and Arabic mathematicians, 
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Archimedes, Apollonius, Ptolemy, Menelaus and Al-Khowarizmi translated to Latin in 
Arabia. 

Fibonacci and The 13th Century :    

In the early part of 1200's Leonardo Fibonacci, the most talented mathematician in middle 
age, came on the stage. He was a man reconstructed mathematics of the middle age.   He was 
interested in arithmetic in childhood influenced by his father, and he traveled Egypt, Sicily, 
Greece, Syria and had a chance to meet east and Arabic mathematics. Finally he came back 
home in 1202 and published the famous Liber abaci. Liber abaci shows to be influenced by 
algebra of Al-Khowarizmi and Abu Kamil. This book played an important part to introduce 
Indian - Arabic number to Europe, and had many problems.  In this book, the following 
sequence is called Fibonacci's sequence.  

1, 1, 2, 3, 5,...., x, y, x+y,..... 

The Antagonism of Commercial Against Monastic Mathematics :  

Though Indian-Arabic a system of measuring by decimal notation spread among the 
merchants, mathematicians persevere in Roman a system of measuring against Indian - 
Arabic a system of measuring. They were churchmen.  From this times the antagonism of 
progress against conservativeness appeared. This antagonism has been known the fight 
between the abacists and the algorists.  The continuance of the antagonism proved that the 
algorists won finally but they waited until 1500's. The characteristic of the algorists was not 
only to calculus using 0 as a number without Indian - Arabic numeration system but also not 
to use abacus.   At last, Indian calculation spread abroad become of the progress of 
commerce and industry con fronted by the period of prosperity. 

Italy and Spain in 1400's and England, France and Germany in 17c used Indian - Arabic 
mathematics instead of Roman's. The greatest mathematician in 1300's was Nicole Oresme 
born at Normandy in 1323. He was a professor and became a bishop and died in 1382. 

One of the books he wrote used a fraction and an exponent for the first time (not modern 
expression), the other expressed coordinates as a point. It become the origin of modern 
coordinates geometry. 

This paper in the end of 1300's influenced Descartes and many Penessance mathematicians. 
Luca Pacioli (1445 - 1509), a Abby in Italy, wrote.<Summa de Arithmetica > This book 
contains many examples and commercial mathematics, especially bookkeeping by double 
entry. 
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Non-European Mathematics  

We need to look over mathematics Arabia and India before moving to Middle and Modern 
Ages.  That's why the two countries contributed to the development of the European middle 
ages mathematics. 

Indian Mathematics:   

 Greek mathematicians were good at geometry but they were not at arithmetic and algebra 
because they didn't use signs. But Indian mathematicians actively used symbols and they 
made Indo-Arabian numbers.  They also used decimal system. Indian mathematicians 
thought about the negative numbers for the first time and they made it a rule. For example, 
Brahmagupta divided numbers into two : property(positive number) and debt(negative 
number).   But he didn't actually deal with 'negative numbers' freely as 'positive numbers.' He 
maybe thought that he could use 'negative numbers' in logical system not in practical. 
Bhaskara even said that 'negative numbers' were unable-to-get-acquainteo 
friends.  But,surprisingly.  Indo-Arabian numbers were as quite complete as people in other 
countries never dreamed it. The reasons why this kind of numbers were made and the art of 
calculation are as follows:  

(1) They used very convenient tools for calculation 
(Indians wrote numbers on a small blackboard with bamboo pen and white ink) 

(2) It may sound paradoxical, but whey didn't know how to distinguish number from quality. 

(3) Commerce developed in India earlier than other countries so they needed the art of 
calculation. 

Although their achievements, they exposed some faults. Mathematics was for the nobilities 
so it tended to be games they, specially, expressed mathematics in the form of verse, which 
brought about despising the strict demonstration and inference. <Lilabati>  written by 
Bhaskara is a good example.  The name of the book is his dqughter's.  It contained many 
meaningful contents but it is better known as a representative sanskrit literary works. It was 
Arabian who developed Indian mathematics' merit. 

The field of algebra (equation) out of Europe-centered mathematics developed only in non-
European countries. It was Europeans who used this Indo-Arabian mathematics but it 
developed so lively in Gupta Dynasty which had a great power in military, politics and 
culture from 4th to 12th century. 

Arabian Mathematics 

Arabians ruled parts of North Africa and Europe for 400 years since Mahomet 
(570?~632).  They had new mathematics which was mixed Greek and Indian mathematics, 
which made Islam lead an important role in mathematics. Islamic mathematics, thus, became 
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the starting point of modern European mathematics. When a slave state, Saracenic Empire, 
was formed, commerce and trade developed. People needed convenient and accurate art of 
calculation. Accurate maps were needed to Arabian merchant.   Islamic ceremony(praying 
toward Mecca) had a great influence on the Arabian mathematics. Arabian merchants 
introduced Indian arithmetic and algebra into their commerce. On receipt of Greek study, 
Arabians praised it so much and they translated many Greek classics in Greek. 
Finally, Arabians fused Greek logical geometry Indian arithmetic and algebra and they 
renewed them. Without Arabians' effort to preserve and study the Greek culture, important 
Greek achievements about mathematics would disappear.   Arabian mathematics, thus, had a 
great role in the history of mathematics. Most people dealing with mathematics but Arabia 
were astronomers because commerce, administration, measurement, the way of making 
maps, astronomy and the calendar method were needed to calculate and survey the area of a 
land. So we can say that mathematics in Arabia served as a setoff for astronomy as in China 
and India. 
Al-Khwarizmi was the most famous Arabian mathematician. He wrote two books about 
algebra and Indian numbers. When the two books were translated in Latin in 12th century, 
Europeans were quite influenced.  'Algorithm' today named after him means a certain 
process of calculation. 

Arabian Mathematics:   
Arabians ruled parts of North Africa and Europe for 400 years since Mahomet (570? 
~632).  They had new mathematics which was mixed Greek and Indian mathematics, which 
made Islam lead an important role in mathematics. Islamic mathematics, thus, became the 
starting point of modern European mathematics. When a slave state, Saracenic Empire, was 
formed, commerce and trade developed. People needed convenient and accurate art of 
calculation. Accurate maps were needed to Arabian merchant.   Islamic ceremony (praying 
toward Mecca) had a great influence on the Arabian mathematics. Arabian merchants 
introduced Indian arithmetic and algebra into their commerce. 
On receipt of Greek study, Arabians praised it so much and they translated many Greek 
classics in Greek. Finally, Arabians fused Greek logical geometry Indian arithmetic and 
algebra and they renewed them. Without Arabians' effort to preserve and study the Greek 
culture, important Greek achievements about mathematics would disappeared.  
Arabian mathematics, thus, had a great role in the history of mathematics. Most people 
dealing with mathematics ub Arabia were astronomers because commerce, administration, 
measurement, the way of making maps, astronomy and the calendar method were needed to 
calculate and survey the area of a land. So we can say that mathematics in Arabia served as a 
setoff for astronomy as in China and India.  
Al-Khwarizmi was the most famous Arabian mathematician. He wrote two books about 
algebra and Indian numbers. When the two books were translated in Latin in 12th century, 
Europeans were quite influenced. 'Algorithm' today named after him means a certain process 
of calculation. 



19 
 

4.  The Sixteenth-Century Mathematics of Italy : Commercial 
Mathematics 

 

 Characteristic of The 16th Century Mathematics. 

Arrangement of The Symbols 

Cubic and Quadratic Equations 

Philosophies of Mathematics 

 

Characteristic of The Sixteenth-Century Mathematics 

Mathematics in 1400's-1500's in spite of the Renaissance revival was not developed after 
seventeenth century or Greek. The only thing focused was a solving of an equation of the 
third and fourth degree and symbolizing algebra of France. Though mathematics had a small 
change in Renaissance, it had powerful energy. However, the most important meaning is to 
make a modern mathematics start and to establish a tradition of European mathematics. 

In summarizing the mathematical achievements of the sixteenth century, We can say that 
symbolic algebra was well started, computation with the Hindu-Arabic numerals became 
standardized, decimal fractions were developed, the cubic and quadratic equations were 
solved and the theory of equations generally advanced, negative numbers were becoming 
accepted trigonometry was perfected and systematized, and some excellent tables were 
computed. The stage was set for the remarkable strides of the next century. 

Arrangement of The Symbols 

Renaissant algebra started with necessity for commerce and arrangement of algebraic 
symbols. 

Plus(+) and Minus(-) :   These symbols appeared in a book about arithmetic written by John 
Widmann - Called father of arithmetic - for the first time in 1489.  At first, these symbols 
expressed 'surplus', and 'insufficiency' but later it meant 'addition' and 'subtraction' 

The symbol of minus (-) was in the book but the plus symbol(+) was not.  Symbol, (+) was 
originated from Latin, 'et'(means 'or'), whereas we can't know the origin of symbol of 
minus(-).  

Radical symbol(¡î) :  Heinrich Schreiber Professor of Wien University used (+) and (-) to 
express addition and subtraction each in his book in 1521. His disciple, Christ off Rudolff 
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used the radical symbol(¡î) including (+), (-), in his bool about algebra in 1525. He used 
simple the radical symbol (¡î) as (¥Ã) which might be from the first letter of root. 

Equal Symbol(=) :   This symbol appeared for the first time in<Whestone of wittle,  
1557> known the first English algebraic book written by Robert Recorde (ca. 1510 ~ 
1558).  He said the reason why he adopted this symbol. "There is no other symbol than 
parallel lines(=) which means equality". 

Division Symbol(¡À):   Swiss mathematician Johann Heinrich Rahn used this symbol for the 
first time in his book <Teutsche Algebra> published in Zurich in 1659. 

Decimal Symbol :   Simon Stevin(1546~1620), a former technician, introduced this symbol 
for the first time. 

Inequality Symbol(>,<) :   These two Symbols were shown in a book published 10 years 
after English mathematician Thomas Harriot(1560~1621). After a century from his death, 
Pierre Bouguer started to use the symbols of ¡Ã and ¡Â. 

Symbols of Multiplication(¡¿) and Difference(¡) :   These symbols appeared in <Clavis 
mathematicae> (1631) written by English mathematician William Oughtred(1574~1660). 

symbol of Letters :   French mathematician Francois Viete (1540~1603) used letters to 
distinguish 'the known quantity' from 'the unknown'. He used consonants - as b,c,d,¡¦ - for 
'the known quantity' and vowels - as, a, e, i, o and u - for 'the unknown' each. 

But today, we use the fore part letters of alphabet - as, a,b,c,¡¦ - for 'the known quantity' and 
hind parts for 'the unknown' . This system started Rene Descartes (1596~1650). 

The Introduction of these many mathematical symbols was closely related to the 
development of printing. 

 Cubic and Quadratic Equations 

Probably the most spectacular mathematical achievement of the sixteenth century was the 
discovery, by Italian mathematicians, of the algebraic solution of cubic and quadratic 
equations.  The story of this discovery, when told in its most colorful version, rivals any page 
ever written by Benvenuto Cellini.  Briefly told, the facts seem to be these.  About 1515, 
Scipione del Ferro (1465-1526), a professor of mathematics at the University of Bologna, 
solved algebraically the cubic equation x3 + mx = n, probably basing his work on earlier 
Arabic sources.  He did not publish his result but revealed the secret to his pupil Antonio 
Fior.   Now about 1535, Nicolo Fontana of Brescia, commonly referred to as Tartaglia (the 
stammerer) because of a childhood injury that affected his speech, claimed to have 
discovered an algebraic solution of the cubic equation x3 + px2 = n.  Believing this claim 
was a bluff, Fior challinged Targaglia to a public contest of solving cubic equations, 
whereupon the latter exerted himself and only a few days before the contest found an 



21 
 

algebraic solution for cubics lacking a quadratic term.  Entering the contest equipped to solve 
two types of cubic equations, whereas Fior could solve but one type, Tartaglia triumphed 
completely.  Later Girolamo Cardano, an unprincipled genius who taught mathematics and 
practiced medicine in Milan, upon giving a solemn pledge of secredy, wheedled the key to 
the cubic form Tartaglia.  In 1545, Cardano published his Ars magna, a great Latin treatise 
on algebra, at Neuremberg, Germany, and in it appeared Tartaglia's solution of the 
cubic.  Tartaglia's vehement protests were met by Ludovico Ferrari, Cardano's most capable 
pupil, who argued that Cardano had received his information from del Ferro through a third 
party and accused Tartaglia of plagiarism from the same source.  There ensued an 
acrimonious dispute from which Tartaglia was perhaps lucky to escape alive. Since the 
actors in the above drama seem not always to have had the highest regard for truth, one finds 
a number of variations in the details of the plot. 

It was not long after the cubic had been solved that an algebraic solution was discovered for 
the general quadratic (or bi quadratic) equation.  In 1540, the Italian mathematician Zuanne 
de Tonini da Coi proposed a problem to Cardano that led to quartic  equation.  Although 
Cardano was unable to solvce the equation, his pupil Ferrari succeeded, and Cardano had the 
pleasure of publishing this solution also in his Ars magna. 

The representative mathematics of the 16th century is algebra originated in Arabia but it 
developed in Europe because commerce and calculation throve in there.  Italian merchants 
and bankers, especially, needed now to calculate accurately. 

Astronomy contribute to the development of mathematics and 'mathematician' meant 
'astronomer' for some time. Nicolas Corpernicus (1473~1543), Polander, was the most 
distinguished astronomer who contributed so much to the development of mathematics. 
His theory about universe brought the improvement of trigonometry.  He himself wrote a 
thesis on trigonometry. 

Philosophies of Mathematics 

There have arisen three main philosophies, or schools of thought, concerning the foundations 
of mathematics the so-called logistic, intuitionist, and formalist schools.  Naturally, any 
modern philosophy of the foundations of mathematics must, somehow or other, cope with 
the present crisis in the foundations of mathematics 

Russell and Whitehead’s LOGICISM: The logistic thesis is that mathematics is a branch of 
logic.  Rather than being just a tool of mathematics, logic becomes the progenitor of 
mathematics.  All mathematical concepts are to be formulated in terms of logical concepts, 
and all theorems of mathematics are to be developed as theorems of logic; the distinction 
between mathematics and logic become merely one of practical convenience. 
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Alfred North Whitehead(1861-1947) and Bertrand Russell(1872-1970) deduced natural 
number system from hypothesis and set of axiom. They, therefore, identified many parts if 
mathematics with logic. 

To avoid the contradictions of set theory. Principia mathematica employs a "theory of 
types." 

Brower's INTUITIONISM: The intuitionist thesis is that mathematics is to be built solely 
by finite constructive methods in the intuitively given sequence of natural 
numbers,  According to this view, then, at the very base of mathematics lies a primitive 
intuition, allied, no doubt, to our temporal sense of before and after, that allows us to 
conceive a single object, then one more, then one more, and so on endlessly. 

For the intuitionists, a set cannot be thought of as a ready-made collection, but must be 
considered as a law by means of which the elements of the set can be constructed in a step-
by-step fashion.  This concept of set rules out the possibility of such contradictory sets as 
"the set of all sets." 

Hilbert's FORMALISM: The formalist thesis is that mathematics is concerned with formal 
symbolic systems.  In fact, mathematics is regarded as a collection of such abstract 
developments, in which the terms are mere symbols and the statements are formulas 
involving these symbols; the ultimate base of mathematics does not lie in logic but only in a 
collection of pre logical marks or symbols and in a set of operations with these 
marks.  Since, from this point of view, mathematics is devoid of concrete content and 
contains only ideal symbolic elements, the establishment of the consistency of the various 
branches of mathematics becomes an important and necessary part of the formalist program. 

Without such an accompanying consistency proof, the whole study is essentially 
senseless.  In the formalist thesis, we have the axiomatic development of mathematics 
pushed to its extreme. 

  In his Grundlagen der Geometrie.(1899).  Hilbert had sharpened the mathematical 
method from the material axiomatics of Euclid to the formal axiomatics of the present 
day.  The formalist point of view was developed later by Hilbert to meet the crisis caused by 
the paradoxes of set theory and the challenge to classical mathematics caused by intuitionist 
criticism. 
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5.  Constructivism as an approach of mathematics learning 

 

Guiding Principles 

Background 

Some Critical Persepctives 

Traditional vs Constructivism  

The Teacher in a Constructivist Classroom 

What does constructivism have to do with my classroom? 

The Students in a Constructivist Classroom 

Benefits of Constructivism 

Impacts  

 

Constructivism is a philosophy of learning founded on the premise that, by reflecting on our 
experiences, we construct our own understanding of the world we live in. Each of us 
generates our own “rules” and “mental models,” which we use to make sense of our 
experiences. Learning, therefore, is simply the process of adjusting our mental models to 
accommodate new experiences. 

Constructivism is basically a theory -- based on observation and scientific study -- about how 
people learn. It says that people construct their own understanding and knowledge of the 
world, through experiencing things and reflecting on those experiences. When we encounter 
something new, we have to reconcile it with our previous ideas and experience, maybe 
changing what we believe, or maybe discarding the new information as irrelevant. In any 
case, we are active creators of our own knowledge. To do this, we must ask questions, 
explore, and assess what we know.  

In the classroom, the constructivist view of learning can point towards a number of different 
teaching practices. In the most general sense, it usually means encouraging students to use 
active techniques (experiments, real-world problem solving) to create more knowledge and 
then to reflect on and talk about what they are doing and how their understanding is 
changing. The teacher makes sure she understands the students' preexisting conceptions, and 
guides the activity to address them and then build on them.  
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Guiding Principles 

1. Learning is a search for meaning. Therefore, learning must start with the issues around 
which students are actively trying to construct meaning. 

2. Meaning requires understanding wholes as well as parts. And parts must be understood 
in the context of wholes. Therefore, the learning process focuses on primary concepts, 
not isolated facts. 

3. In order to teach well, we must understand the mental models that students use to 
perceive the world and the assumptions they make to support those models. 

4. The purpose of learning is for an individual to construct his or her own meaning, not 
just memorize the “right” answers and regurgitate someone else’s meaning. Since 
education is inherently interdisciplinary, the only valuable way to measure learning is 
to make the assessment part of the learning process, ensuring it provides students with 
information on the quality of their learning. 

Background 

The concept of constructivism has roots in classical antiquity, going back to Socrates’ 
dialogues with his followers, in which he asked directed questions that led his students to 
realize for themselves the weaknesses in their thinking. The Socratic dialogue is still an 
important tool in the way constructivist educators assess their students' learning and plan 
new learning experiences. 

In this century, Jean Piaget  and John Dewey  developed theories of childhood development 
and education, what we now call Progressive Education, that led to the evolution of 
constructivism. 

Piaget believed that humans learn through the construction of one logical structure after 
another. He also concluded that the logic of children and their modes of thinking are initially 
entirely different from those of adults. The implications of this theory and how he applied 
them have shaped the foundation for constructivist education. 

Dewey called for education to be grounded in real experience. He wrote, "If you have doubts 
about how learning happens, engage in sustained inquiry: study, ponder, consider alternative 
possibilities and arrive at your belief grounded in evidence." Inquiry is a key part of 
constructivist learning. 

Among the educators, philosophers, psychologists, and sociologists who have added new 
perspectives to constructivist learning theory and practice are Lev Vygotsky 3, Jerome 
Bruner 4, and David Ausubel 5. 
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Vygotsky introduced the social aspect of learning into constructivism. He defined the "zone 
of proximal learning," according to which students solve problems beyond their actual 
developmental level (but within their level of potential development) under adult guidance or 
in collaboration with more capable peers. 

Bruner initiated curriculum change based on the notion that learning is an active, social 
process in which students construct new ideas or concepts based on their current knowledge. 

Seymour Papert's 6 groundbreaking work in using computers to teach children has led to the 
widespread use of computer and information technology in constructivist environments.  

Modern educators who have studied, written about, and practiced constructivist approaches 
to education include John D. Bransford 7, Ernst von Glasersfeld 8, Eleanor Duckworth 9, 
George Forman 10, Roger Schank 11, Jacqueline Grennon Brooks 12, and Martin G. 
Brooks 13 

Some Critical Perspectives 

Constructivism has been criticized on various grounds. Some of the charges that critics level 
against it are: 

1.  It's elitist. Critics say that constructivism and other "progressive" educational theories 
have been most successful with children from privileged backgrounds who are 
fortunate in having outstanding teachers, committed parents, and rich home 
environments. They argue that disadvantaged children, lacking such resources, benefit 
more from more explicit instruction. 

   

 Social constructivism leads to "group think." Critics say the collaborative aspects of 
constructivist classrooms tend to produce a "tyranny of the majority," in which a few 
students' voices or interpretations dominate the group's conclusions, and dissenting 
students are forced to conform to the emerging consensus.  

2.   There is little hard evidence that constructivist methods work. Critics say that 
constructivists, by rejecting evaluation through testing and other external criteria, have 
made themselves unaccountable for their students' progress. Critics also say that 
studies of various kinds of instruction -- in particular Project Follow Through 1, a 
long-term government initiative -- have found that students in constructivist 
classrooms lag behind those in more traditional classrooms in basic skills.  
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 Constructivists counter that in studies where children were compared on higher-order 
thinking skills, constructivist students seemed to outperform their peers. 

Traditional vs Constructivism  

As with many of the methods addressed in this series of workshops, in the constructivist 
classroom, the focus tends to shift from the teacher to the students. The classroom is no 
longer a place where the teacher ("expert") pours knowledge into passive students, who wait 
like empty vessels to be filled. In the constructivist model, the students are urged to be 
actively involved in their own process of learning. The teacher functions more as a facilitator 
who coaches, mediates, prompts, and helps students develop and assess their understanding, 
and thereby their learning. One of the teacher's biggest jobs becomes ASKING GOOD 
QUESTIONS.  

And, in the constructivist classroom, both teacher and students think of knowledge not as 
inert factoids to be memorized, but as a dynamic, ever-changing view of the world we live in 
and the ability to successfully stretch and explore that view. 

The chart below compares the traditional classroom to the constructivist one. You can see 
significant differences in basic assumptions about knowledge, students, and learning. (It's 
important, however, to bear in mind that constructivists acknowledge that students are 
constructing knowledge in traditional classrooms, too. It's really a matter of the emphasis 
being on the student, not on the instructor.) 

Traditional Constructivist 

Curriculum begins with the parts of the 
whole. Emphasizes basic skills. 

Curriculum emphasizes big concepts, 
beginning with the whole and expanding to 
include the parts. 

Strict adherence to fixed curriculum is 
highly valued. 

Pursuit of student questions and interests is 
valued. 

Materials are primarily textbooks and 
workbooks. 

Materials include primary sources of material 
and manipulative materials. 

Learning is based on repetition. Learning is interactive, building on what the 
student already knows. 

Teachers disseminate information to Teachers have a dialogue with students, 
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students; students are recipients of 
knowledge. 

helping students construct their own 
knowledge. 

Teacher's role is directive, rooted in 
authority. 

Teacher's role is interactive, rooted in 
negotiation. 

Assessment is through testing, correct 
answers. 

Assessment includes student works, 
observations, and points of view, as well as 
tests. Process is as important as product. 

Knowledge is seen as inert. Knowledge is seen as dynamic, ever changing 
with our experiences. 

Students work primarily alone. Students work primarily in groups. 

 

The Teacher in a Constructivist Classroom 

Constructivist teachers encourage students to constantly assess how the activity is helping 
them gain understanding. By questioning themselves and their strategies, students in the 
constructivist classroom ideally become "expert learners." This gives them ever-broadening 
tools to keep learning. With a well-planned classroom environment, the students learn HOW 
TO LEARN.  

You might look at it as a spiral. When they continuously reflect on their  experiences, 
students find their ideas gaining in complexity and power, and they develop increasingly 
strong abilities to integrate new information. One of the teacher's main roles becomes to 
encourage this learning and reflection process.  

Contrary to criticisms by some (conservative/traditional) educators, constructivism does not 
dismiss the active role of the teacher or the value of expert knowledge. Constructivism 
modifies that role, so that teachers help students to construct knowledge rather than to 
reproduce a series of facts. The constructivist teacher provides tools such as problem-solving 
and inquiry-based learning activities with which students formulate and test their ideas, draw 
conclusions and inferences, and pool and convey their knowledge in a collaborative learning 
environment. Constructivism transforms the student from a passive recipient of information 
to an active participant in the learning process. Always guided by the teacher, students 
construct their knowledge actively rather than just mechanically ingesting knowledge from 
the teacher or the textbook. 
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Constructivism is also often misconstrued as a learning theory that compels students to 
"reinvent the wheel." In fact, constructivism taps into and triggers the student's innate 
curiosity about the world and how things work. Students do not reinvent the wheel but, 
rather, attempt to understand how it turns, how it functions. They become engaged by 
applying their existing knowledge and real-world experience, learning to hypothesize, testing 
their theories, and ultimately drawing conclusions from their findings.  

The best way for you to really understand what constructivism is and what it means in your 
classroom is by seeing examples of it at work, speaking with others about it, and trying it 
yourself. As you progress through each segment of this workshop, keep in mind questions or 
ideas to share with your colleagues.  

What does constructivism have to do with my classroom? 

As is the case with many of the current/popular paradigms, you're probably already using the 
constructivist approach to some degree. Constructivist teachers pose questions and problems, 
then guide students to help them find their own answers. They use many techniques in the 
teaching process. For example, they may: 

• prompt students to formulate their own questions (inquiry)  

• allow multiple interpretations and expressions of learning (multiple intelligences)  

• encourage group work and the use of peers as resources (collaborative learning)  

More information on the above processes is covered in other workshops in this series. For 
now, it's important to realize that the constructivist approach borrows from many other 
practices in the pursuit of its primary goal: helping students learn HOW TO LEARN. 

The Students in a Constructivist Classroom 

Students are not blank slates upon which knowledge is etched. They come to learning 
situations with already formulated knowledge, ideas, and understandings. This previous 
knowledge is the raw material for the new knowledge they will create.  

Example: An elementary school teacher presents a class problem to measure the length of 
the "Mayflower." Rather than starting the problem by introducing the ruler, the teacher 
allows students to reflect and to construct their own methods of measurement. One student 
offers the knowledge that a doctor said he is four feet tall. Another says she knows horses are 
measured in "hands." The students discuss these and other methods they have heard about, 
and decide on one to apply to the problem.  

The student is the person who creates new understanding for him/herself. The teacher 
coaches, moderates, suggest, but allow the students room to experiment, ask questions, try 



29 
 

things that don't work. Learning activities require the students' full participation (like hands-
on experiments). An important part of the learning process is that students reflect on, and 
talk about, their activities. Students also help set their own goals and means of assessment. 

The constructivist classroom relies heavily on collaboration among students. There are many 
reasons why collaboration contributes to learning. The main reason it is used so much in 
constructivism is that students learn about learning not only from themselves, but also from 
their peers. When students review and reflect on their learning processes together, they can 
pick up strategies and methods from one another.  

The main activity in a constructivist classroom is solving problems. Students use inquiry 
methods to ask questions, investigate a topic, and use a variety of resources to find solutions 
and answers. As students explore the topic, they draw conclusions, and, as exploration 
continues, they revisit those conclusions. Exploration of questions leads to more questions.  

Students have ideas that they may later see were invalid, incorrect, or insufficient to explain 
new experiences. These ideas are temporary steps in the integration of knowledge. For 
instance, a child may believe that all trees lose their leaves in the fall, until she visits an 
evergreen forest. Constructivist teaching takes into account students' current conceptions and 
builds from there. 

What happens when a student gets a new piece of information? The constructivist model 
says that the student compares the information to the knowledge and understanding he/she 
already has, and one of three things can occur: 

• The new information matches up with his previous knowledge pretty well (it's 
consonant with the previous knowledge), so the student adds it to his understanding. It 
may take some work, but it's just a matter of finding the right fit, as with a puzzle 
piece.  

• The information doesn't match previous knowledge (it's dissonant). The student has to 
change her previous understanding to find a fit for the information. This can be harder 
work.  

• The information doesn't match previous knowledge, and it is ignored. Rejected bits of 
information may just not be absorbed by the student. Or they may float around, 
waiting for the day when the student's understanding has developed and permits a fit. 

Benefits of Constructivism 

• Children learn more, and enjoy learning more when they are actively involved, rather 
than passive listeners. 
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• Education works best when it concentrates on thinking and understanding, rather than 
on rote memorization. Constructivism concentrates on learning how to think and 
understand. 

• Constructivist learning is transferable. In constructivist classrooms, students create 
organizing principles that they can take with them to other learning settings. 

• Constructivism gives students ownership of what they learn, since learning is based on 
students' questions and explorations, and often the students have a hand in designing 
the assessments as well. Constructivist assessment engages the students' initiatives and 
personal investments in their journals, research reports, physical models, and artistic 
representations. Engaging the creative instincts develops students' abilities to express 
knowledge through a variety of ways. The students are also more likely to retain and 
transfer the new knowledge to real life. 

• By grounding learning activities in an authentic, real-world context, constructivism 
stimulates and engages students. Students in constructivist classrooms learn to 
question things and to apply their natural curiosity to the world. 

• Constructivism promotes social and communication skills by creating a classroom 
environment that emphasizes collaboration and exchange of ideas. Students must learn 
how to articulate their ideas clearly as well as to collaborate on tasks effectively by 
sharing in group projects. Students must therefore exchange ideas and so must learn to 
"negotiate" with others and to evaluate their contributions in a socially acceptable 
manner. This is essential to success in the real world, since they will always be 
exposed to a variety of experiences in which they will have to cooperate and navigate 
among the ideas of others. 

Impacts  

Curriculum–Constructivism calls for the elimination of a standardized curriculum. Instead, it 
promotes using curricula customized to the students’ prior knowledge. Also, it emphasizes 
hands-on problem solving. 

Instruction–Under the theory of constructivism, educators focus on making connections 
between facts and fostering new understanding in students. Instructors tailor their teaching 
strategies to student responses and encourage students to analyze, interpret, and predict 
information. Teachers also rely heavily on open-ended questions and promote extensive 
dialogue among students. 

Assessment–Constructivism calls for the elimination of grades and standardized testing. 
Instead, assessment becomes part of the learning process so that students play a larger role in 
judging their own progress. 
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Constructivist ways of teaching/learning activities (some examples) 

Relating Two Quantities 

Overview 

There are many quantities 
that seem to be related with 
each other. This lesson deels 
with situations suggesting  
relationships between two 
quantities. The participants 
will discover the 
relationship between these 
quantities, some basic ideas 
of functional relationship 
are reviewed and further 
emphasized. Further, 
finding how the quantities 
are related in these addition, the lesson demonstrates how a numerical solution can be used 
to arrived at a generalized solution. Connection among the different solutions is also 
emphasized.  

 

Instructional procedures 

Introductory activity 

Study this diagram/picture. 

The arrow is shot at the same time the star apple is falling.  

Will the arrow likely to hit the star apple? Why? 

 

Expected answer 

Yes,the arrow will likely hit the star apple. 

The arrow reaches a maximum height then goes down due to gravity. The star apple also 
falls down due to gravity. Since the arrow and the star apple are both falling due to gravity, it 
is likely to happen, that the arrow will hit the star apple.  
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Here is a result of an experiment 
that follows the plight of an object 
falling due to gravity. Explain that 
distance is measured from the 
time the object is dropped. 

 

 

 

 

 

 

Time (sec) 0 0.4 0.6 0.8 1.0 

Distance (m) 0 0.8 1.8 3.2 5 

 

What do you observe ? 

Expected answers 

a.  The distance changes as time changes 
b.  For each value of time there corresponds a single value of height 
c.  As time increases, the distance also increases. 

Predict the height when the time is 1.2 second? 

Show your solution 

Possible answers 

 

Method 1. Looking for a pattern. 

To lead the participants to this solution, let then observe the given values. 
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Method 2. Graphing 

Using the graph, the distance  that corresponds to ½ sec is approximately 7.2 m 

 

Method 3. Using an equation  

The formula for distance traveled by a freely object is given by :  

Y=1/2 gx2 , where y is the distance traveled by a freely falling body 

X is the time the body is in motion 

g is the gravitational attraction on the 
body 

For the participants be able to think of 
this solution, let them recall the 
formula for the distance traveled by a 
freely falling body. 

In the metric system of 
measurement,the value of g is 9.8 
m/sec2. 

Hence, y=5x2 

So, when time = 1.2 sec 

Y=(5m/sec2)(1.2 sec ) 2 

= 7.2 m 

You have noticed that in the situation 
we have considered, time and distance the object falls vary with each other. 

Now, can you cite some situations in daily life which involve quantities that vary with each  
others ? Describe how these quantities are related using arrow diagram, ordered pairs in 
tables, rules expressed in words and equations. 

Possible answers 

a. Buying an item 

Arrow diagram 

No. of ballpens   cost (p) 

1 6 
2 12 
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3 18 

. . 

.   . 

Answers may vary. The answers suggested here are just two of the many possible answers. 

Ordered pairs in table 

 

  

 

 

Rules expressed in words 

The cost of ballpens bought is equal to 6 Rs, multiplied by the number of ballpens bought 

Equation 

Cost = p6 multiplied by the no.of ballpens 

 Y= 6x 

b. Riding in a bus 
  

  

 

 

 

 

 

 

 

At this point, review the different ways of representing two quantities that are related 

- Arrow diagrams 
- Ordered pairs in tables or lists 
- Rules expressed in words 

X(no.of ballpens ) 0 1 2 3 ……… 

Y (cost in Rs ) 0 6 12 18 ……. 
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- Equations 
- Graphs 

Mention that although an arrow diagram 
clearly pictures the correspondence of the 
values. It has its limitation. In cases where 
more pairs are involved, an arrow diagram is 
not advisable to use. Graphs can be used to 
picture the relationship between the 
quantities. 

Recall at this point, that a relationship 
describing how one quantity varies with the 
other quantity is a function . Do not forget to 
emphasize however, that not all relationships 
are functions. If you represent the two 
examples you have given by a graph, how 
would the graphs look ?  

Call their attention regarding the 
correspondence of values. 

For the first example they gave and the situation previously considered, one value of one 
quantity corresponds to only one value of  the other quantity. This correspondence is called 
one to one. A one to one correspondence describes a function. 

Intervention Strategies for Mathematics Teachers 

Intervention has become an important way for teachers to ensure that all students succeed in
today's high stakes testing environment. Helping students who are struggling with
mathematics requires teachers to choose an appropriate time and strategy for the intervention. 
Without a systematic approach, this can be a challenge for teachers who have multiple
students in need of help. 

Following are some easy strategies to help you identify students who may benefit from 
intervention, and address the needs of those students. 

Step One: Identify 
Use the following easy and effective strategies to help you identify students who may be 
struggling and who may benefit from intervention strategies. 

• Use Formal and Informal Assessments 
No single instructional strategy is more important than effective, appropriate, and 
informative assessment. It is critical that teachers are well-informed about their 
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students' understanding and mastery of content. But assessment should also be handled 
with restraint—too much testing may produce students who are weary and 
overwhelmed. Use the following techniques when assessing your students. 

o Use informal techniques frequently during regular class time to gauge student 
understanding. 

o Use questioning that focuses on student thinking and reasoning to help you monitor 
your students. 

o Incorporate writing activities and group work to observe student thinking and identify 
misconceptions and gaps in understanding. 

o Have students illustrate concepts using drawings, graphs, and models. 

• Integrate Warm-Up Activities The use of quick warm-up activities in class can be 
beneficial for several reasons. One of the most common reasons students may need 
intervention is that they have not fully mastered prerequisites. You can use warm-up 
activities to review prerequisites and to gauge student mastery. Begin your lessons by 
having your students complete several problems that cover prerequisites. This 
technique will also give you time to circulate among your students and have quiet one-
on-one  

• conversations. These discussions can be used as valuable informal assessment 
opportunities. 

Warm-Up Activity 

For a unit on solving systems of linear inequalities, ask students to solve several 
inequalities as a warm-up activity. Then have your students graph a few 
inequalities. 

• Write to Learn 

Having students write in math class can help you identify areas of misunderstanding 
and gaps in understanding. Begin your instructional units by having your students 
write explanations of several key prerequisites. Students may feel more comfortable 
writing and may be more apt to expose their weaknesses in their writing. This can be 
especially true for struggling students who may be inclined to stay quiet during 
discussions. Use math journals to have students record the steps they undertook to 
solve a problem. You can use their explanations as a form of error analysis to help you 
identify gaps in understanding. 
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• Assign Application Problems 
Make sure that you utilize a variety of techniques to gauge depth of understanding in 
your students. Some students who have a cursory understanding of a topic may be able 
to perform relatively well on standard assessment questions. However, the lack of 
mastery of a concept can be illuminated via application problems. This exercise can be 
especially important prior to moving on to a new concept. An application problem can 
identify students who have not thoroughly mastered a concept and who will likely 
require intervention if they move on to a new concept too soon. 

Step Two: Address the Issues 
Using the following instructional strategies to help you address the needs of your students. 

• Use Small Groups or Student Pairs 
Having your students work in small groups or in student pairs is a beneficial 
instructional strategy for struggling students. Students who need intervention may be 
insecure about their abilities and consequently unmotivated. Small groups or student 
pairs can be less intimidating for struggling students. Students may be more likely to 
ask questions and admit confusion when working in small groups or with another 
student. 
 
Students can also benefit from explanations from fellow students. Often these 
explanations can make more sense to a student than one offered from an instructor. 
This instructional strategy can enable teachers to spend time listening to and observing 
students as they work on assignments. 
 
The grouping of students should be carefully thought out ahead of time to best address 
the needs of struggling students. For many cooperative group activities, random 
assignments are fine, but in the case of students in need of intervention, you will want 
to form groups or pairs that will be conducive to discussion and support. 

• Differentiate Instruction 
When it comes to addressing students who need intervention, differentiated strategies 
may improve learning. Many students who need intervention struggle to learn concepts 
because they may not be able to grasp abstract concepts. Vary your instructional 
techniques to best address the learning styles of your struggling students. Some 
students may not understand a concept when illustrated symbolically, but may be able 
to understand it when it is illustrated concretely, either via models, manipulatives, or 
technology. The more varied instructional strategies you incorporate into your lessons, 
the more likely you will be able to reach all students. 
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• Incorporate Multiple Representations 
Many middle and upper grade students require intervention because they are not able to 
grasp the abstract concepts of higher levels of mathematics. The use of multiple 
representations can help address these needs. When introducing a new concept, use as 
many representations of the concept as you can: use manipulatives and models, real-life 
examples, technology, and symbolic representations. 

 

Try This 

For a lesson on parallel and perpendicular lines, use the following 
multiple representations: 

o Show examples of parallel and perpendicular lines in architecture 
and art. 

o Give students straws, sticks, threads to model these lines. 

o Use dynamic geometry, such as the Geometer's Sketchpad 
software, to demonstrate parallel and perpendicular lines. 

o Have your students record in their math journals several examples 
of lines that can be found in the world around them. 

• Emphasize Real-Life Applications 
Help students see the value and application of the mathematics they are studying by 
presenting as many real-life applications as you can. By relating a math topic to 
something relevant in a student's life, you can help increase a student's interest in the 
topic, and help make mathematics more meaningful. This can be especially beneficial 
for struggling students who may not be able to see how the math they are studying has 
any relevance to their daily lives. Many real-life applications of mathematics can make 
the content more interesting to struggling students. By increasing their interest, you can 
help increase their motivation. 

• Learn About Tutoring Options 
In addition to these instructional strategies, you should also learn about tutoring options 
that may be available to your students. 

o Does your school have an after-school tutoring program? 

o Are there low-cost tutoring centers near your school? 

o Are there any mentoring programs available for your students? 
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Know the tutoring options that are available for the students who may need 
something extra to help address their needs. 

• Consider Seating Arrangements 
Sometimes intervention can be as simple as where your students sit in your classroom. 
Sometimes physical placement can get overlooked once students reach the middle and 
upper grades. Strategically seat your struggling students in the best location in your 
classroom, where they feel most comfortable, can focus on the lesson, and may benefit 
from a helpful student peer nearby. 

 

This article was contributed by Heidi Janzen, a former classroom teacher and 
mathematics specialist. She now works as an educational consultant in the areas of 
professional development, curriculum, standards, and assessment. 
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6. Games for teaching mathematics 

 

Probability based Games 

 Rescue Mission Game 

Sticks and Stones 

The Game of SKUNK 

 

Probability based Games 

Probability is an area of mathematics that often doesn't get its fair share of attention in 
elementary classrooms. Here are some activities to get you started that involve students in 
thinking about probability ideaswhile also providing practice with mental addition, 
experience with strategic thinking, and the opportunity to relate multiplication and geometry. 
All activities are adapted from Marilyn Burns's About Teaching Mathematics (Math 
Solutions Publications, 1992). 

The Game of Pig (Grades 3–8) 

Math concepts: This game for two or more players gives students practice with mental 
addition and experience with thinking strategically. 

The object: to be the first to score 100 points or more. 

How to play: Players take turns rolling two dice and following these rules: 

1.  On a turn, a player may roll the dice as many times as he or she wants, mentally 
keeping a running total of the sums that come up. When the player stops rolling, he or 
she records the total and adds it to the scores from previous rounds. 

2.  But, if a 1 comes up on one of the dice before the player decides to stop rolling, the 
player scores 0 for that round and it's the next player's turn. 

3.  Even worse, if a 1 comes up on both dice, not only does the turn end, but the player's 
entire accumulated total returns to 0. 

After students have had the chance to play the game for several days, have a class discussion 
about the strategies they used. You may want to list their ideas and have them test different 
strategies against each other to try and determine the best way to play. 
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Two-Dice Sums (Grades 1–8) 

Math concepts: Students of all ages can play this game, as long as they're able to add the 
numbers that come up on two dice. While younger children benefit from the practice of 
adding, older students have the opportunity to think about the probability of the sums from 
rolling two dice. 

The object: to remove all the counters in the fewest rolls possible. 

How to play: Two or more players can play. Each player needs 11 counters, a game strip that 
lists the numbers from 2 to 12 spaced far enough apart so the counters can fit on top of each 
number, and a recording sheet. Here are the rules for playing: 

1.  Each player arranges 11 counters on the game strip and records the arrangement. 

2.  Once the counters are arranged, players take turns rolling the dice. 

3.  For each roll, all players can remove one counter if it is on the sum rolled. Players 
keep track of the number of rolls of the dice it takes to clear their game board. 

After students have had the chance to play the game for several days or so, have a class 
discussion about the different ways they arranged the counters and the number of rolls it 
took. Have them write about the arrangements that are best for removing the counters in the 
fewest number of rolls. For an extension, try Which Number Wins? 

Which Number Wins? (Grades 1–8) 

Math concepts: In this individual activity, students roll two dice and record the results. Make 
a recording sheet that is an 11 x 12 block grid with the numbers 2 through 12 across the top. 
While young children gain practice with addition facts, older children can examine the data, 
compare results with other classmates, and think about why some sums are more likely than 
others. To do the activity, students need two dice and a recording sheet. 

The object: to roll the dice and record the number fact in the correct column, stopping when 
one number gets to the finish line. 

How to play: Post a class chart that lists the numbers from 2 to 12 and have students make a 
tally mark to show the winning sum. Have each child do the experiment at least twice. 

After you've collected the data, discuss with the class why it seems that some sums "win" 
more than others. Young children may not be able to explain it, but older students often 
figure out that there is only one way to get the sums of 2 and 12, and six ways to get a sum 
of 7. 

After discussing the data, return to the game of Two-Dice Sums and see if students revise 
their strategies. You may want to ask students to write about the game and the likelihood of 
two-dice sums. 
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How Long? How Many? (Grades 3–5) 

Math skills: This two-person game involves probability and strategy, and gives children 
experience with multiplication in a geometric context. 

The object: to make rectangular arrays with Cuisenaire Rods and place them on 10-by-10-
centimeter grids until no more space is available. The game encourages students to think 
strategically as they consider where to place their rectangles to avoid being blocked. 

How to play: students need Cuisenaire Rods, one die, and a grid sheet for each (Make a 
10cm x 10cm grid. Also leave space for students to record how many of their squares are 
covered and uncovered.) The rules are: 

1.  On his or her turn, a player rolls the die twice to determine which Cuisenaire Rods to 
take. The first roll tells "how long" a rod to use. The second roll tells "how many" rods 
to take. 

2.  Players arrange their rods into a rectangle, place it on their grid, and trace it. They 
write the multiplication sentence inside. 

3.  The game is over when one player can't place a rectangle because there's no room on 
the grid. Then players figure out how many of their squares are covered and how many 
are uncovered and check each other's answers. 

After students have had experience playing the game, talk with them about strategies for 
placing rectangles and figuring out their final scores. 

(Adapted from Instructor, April 1994.) 

Rescue Mission Game 

Students play a game to learn about the four forces of flight: lift, drag, thrust, and weight. 
Before playing the game, students conduct a probability experiment with spinners and record 
their results in tally tables and bar graphs. They then use their findings to select spinners with 
the greatest probability of helping them win the game. In a portion of the game, students use 
ordered pairs to plot points on the coordinate plane to show their flight path. 

This lesson was adapted from Travel in the Solar System in Mission Mathematics II: 
Grades 3-5, a NASA/NCTM project, NCTM 1997. 

Background Information 

When we look at large airliners and helicopters, it seems impossible for such huge objects to 
lift off the ground and fly. Flight is possible because of four forces (pushes or pulls) that act 
on the aircraft. 
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Two of the forces are lift and weight. Lift is the upward force that works against the force of 
weight, the force that holds the aircraft down. Lift is created by the effect of airflow over and 
under the wings of airplanes or the blades of helicopters. Wings are usually thicker on the 
front edge and thinner on the back edge. This shape allows the air moving over the wing to 
move faster, and consequently, to have less pressure. The air moving under the wing reveals 
more slowly and results in more pressure pushing up on the wing. Thus, the force pushing up 
on the wing is greater that the force pushing down. 

The other two forces of flight are thrust and drag. Thrust is the push or the pull forward that 
causes aircraft to move. The engines create thrust. Drag is an opposite force that slows the 
aircraft. Drag is caused by the surfaces of the aircraft that interrupt or deflect the smooth 
airflow around the aircraft. Some things that affect the amount of drag are the flaps; the 
ailerons; and the size, shape, and position of the wings. 

 

 Getting Started 

As you introduce or review the forces of flight, ask questions to focus students' attention on a 
diagram with arrows to show the direction associated with each of the four forces. For 
example, ask which force pulls things to the ground. 

As you present the Rescue Mission Game activity sheet, introduce the game students will be 
playing. They are pilots of rescue helicopters. Their mission is to fly their helicopters to the 
top of a mountain to rescue lost hikers. 

As you discuss the Rescue Mission Game activity sheet, explain how the spinner determines 
in which direction to move. For example, if the pointer lands on Lift, students move their 
helicopter up one space. Ask them the following questions: 

In which direction they should move if it lands on Drag. [Left] 

On Thrust? [Right] 

On Weight? [Down] 
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When students cannot move in the direction indicated by the spinner, they stay in the same 
position for that turn. 

Show students the starting point of the game and ask them to think about the flight path for 
their mission. Ask students the following questions: 

In which directions they must go to reach the mountaintop. [Up and to the right] 

Which forces will be most helpful. [Lift and thrust] Why? 

Developing the Activity 

Part 1: Getting Ready for the Mission 

As you discuss the Rescue Mission Game activity sheet, explain that since the lost hikers are 
cold and hungry, the pilot needs to get to the top of the mountain quickly. Ask students to 
compare the spinners. 

Class Conversation 

Use the following questions to guide the class conversation: 

  How are the spinners alike? How are they different? 

  Which spinner do you think will help your helicopter get to the mountaintop the 
fastest? Why do you think so? 

  How can we test the spinners to check our predictions? 

After discussing their suggestions, ask students to work with a partner to spin each spinner 
50 times and to record all results in a tally table. 

 Spinner C Tally Table 

 

 

 Lift   

Thrust   

Drag   

Weight   

 

When all data have been collected, help students display their data in bar graphs. 
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Results of 50 Spins 

 

 Each bar graph should be discussed and interpreted. Help students see that on spinner C, all 
forces have the same chance for the pointer to land on them. Since there is 1 chance out of 4 
equal chances that the pointer will land on Lift, the probability is ?. 

Class Conversation 

Use the following questions to guide the next discussion. 

Compare the regions in spinner C. How many of the same size do you see? [4] 

How many different forces are on spinner C? [4] 

Is it less likely, equally likely, or more likely that the pointer will land on Lift than on 
Weight, Drag, or Thrust? 

What is the likelihood, or probability, of landing on Thrust? On Drag? On Weight? 

Does the pointer have the same chance of landing on each force? Why do you think that? 

Next, ask students to look closely at their graphs for spinner C to interpret the results of their 
experiment. 

Since the probability is the same for each force on spinner C, what should the graphs look 
like? Why? 

Do your bar graphs show this? 

Which bars are taller? Shorter? 

What does the bars' appearance show you? 

Repeat this analysis process with each spinner. 

When it is your turn how can you use your graphs to help you decide which spinner to use on 
that turn? 

Students should keep all spinners for the Rescue Mission Game. 
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Part 2: Playing the Rescue-Mission Game 

Introduce or review how to read and write ordered pairs to name a location on a coordinate 
grid. Practice using the spinners to determine moves on the game board. Ask students to 
predict how many spins will be needed to reach the top of the mountain. 

Students then play the game with a partner to see which helicopter can rescue the lost hikers 
on the mountaintop first. As they take turns, students should record the following data: 

 Which spinner is selected for the turn 

 Where the pointer lands (lift, thrust, weight, or drag) 

 How the student moves (up, right, down, or left) 

 The ordered pair that names the point to which they move 

Turn 
Number  

I Selected This 
Spinner  

Pointer Landed 
On  

Direction in Which I 
Moved  

Place Where I 
Landed 

1 C Lift Up (0,1) 

2 D Thrust Right (1,1) 

3 D Lift Up (1,2) 

Students can record the flight path on the game-board grid by plotting the points for each 
student in different colors. When finished, students can connect the points to show the flight 
path. 

Sticks and Stones  

Students will play Sticks and Stones, a game based on the Apache game "Throw Sticks," 
which was played at multi-nation celebrations. Students will collect data, investigate the 
likelihood of various moves, and use basic ideas of expected value to determine the average 
number of turns needed to win a game. 

Instructional Plan  

The Sticks and Stones game is based on the Apache game "Throw Sticks." To play the game, 
students throw three sticks, each decorated on one side. Students move their pieces around 
the game board based on the results of the throw, as described below. 

Allow students to decorate three sticks on one side only; the other side should be blank. (If 
playing this game as part of a larger unit about Native American culture, you can allow 
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students to decorate the sticks with tribal symbols.) Students will use these sticks to 
determine how far they move when playing the game. 

 

To create the game board, arrange 40 stones in a circle, preferably divided into four groups 
of 10. (In groups of 10, a side benefit of this game is that it helps to develop student 
understanding of the place-value system. For instance, if a student is currently on the 
seventh stone in one group of 10 and rolls a 5, she gets to move to the second stone in the 
next group of 10. This demonstrates modular arithmetic, because 7 + 5 = 12, which has 
remainder 2 when divided by 10.) As an alternative, you can use a Monopoly® game board, 
which consists of 10 squares on each of four sides. 

 

The rules of the game are as follows: 

 Object of the Game: Be the first player to move your piece around the board past 
your starting point. 

 Set-Up: Each student should place a marker on opposite sides of the circle. The area 
inside the circle is used for throwing the sticks when playing the game. 
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 Play: Determine which player will go first. Player 1 throws the three sticks into the 
center of the circle and moves her piece according to the results: 

 

 Player 2 then throws the sticks and moves accordingly. Play continues with players 
alternating turns. 

 Special Rule: If one player’s marker lands on or passes another player’s, the player 
passed over must move her piece back to the starting point. 

 Pair students together, and let them play the game once, for fun. Then, before playing a 
second time, have students make a chart of all throws that are possible. During a second 
game, have them keep track of their throws while playing. How many of each occurred? 

As an alternative, students can use the demonstration below to generate random throws. 

After tallying their throws during the second game, have kids use sticky notes to build a bar 
graph. Place a large piece of paper on the wall, or draw a graph on the chalkboard, which 
shows the possible throws on the horizontal axis and the number of occurrences on the 
vertical axis. 

For each time a particular throw occurred during their games, students should place a sticky 
note on the graph. For instance, if a student had three throws with zero sides decorated, the 
student should place three sticky notes in that category. Allow 4-6 students to place sticky 
notes on the same graph. Compiling the data in this way will give a larger sample size and 
should yield experimental results that are close to the theoretical probabilities; if only 1-2 
students place their data on a graph, the results are more likely to be skewed. As necessary, 
create a new graph for each group of 4-6 students. (If possible, you can put all of the data 
from the entire class on one graph, but if there is too much data, the bars will get too tall.) A 
completed graph may look something like the following: 
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Allow students to compare the relative heights of the bars on the graph. [The bars for one or 
two sides decorated are much taller, meaning that those results are more likely when the 
sticks are thrown. It also means that the probability of having a throw with three sides the 
same is less likely.] 

To facilitate a discussion about what the graph means, have students compare just 
two categories. You may want to ask the following questions: 

 Which is more likely—a throw with one stick decorated or a throw with two sticks 
decorated? [Neither. They both occur about the same amount.] 

 Which is more likely—a throw with three sticks decorated or a throw with no sticks 
decorated? [Neither. They both occur about the same amount.] 

 Which is more likely—a throw with three sticks decorated or a throw with two sticks 
decorated? [A throw with two sticks decorated is about three times as likely as a throw 
with all three decorated.] 

 Which is more likely—a throw with no sticks decorated or a throw with one stick 
decorated? [A throw with one stick decorated is about three times as likely as a throw 
with no sticks decorated.] 

Be sure to use mathematical terms during this discussion, such as likely and probability. For 
instance, you may want to ask students, "How much more likely is it to throw three 
decorated sides than to throw only two decorated sides? Is it twice as likely? More than 
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twice as likely?" [From the graph, it appears to be about three times as likely, because the bar 
is three times as tall.] 

Return to the context of the game. Ask students, "Why do you think you get to move more 
spaces when all three sticks land on the same side?" [Throws with zero or three sides 
decorated are less likely than throws with one or two sides decorated. Since they are more 
rare, the reward for those throws is greater. On the other hand, a throw with three sides 
decorated is just as likely as a throw with no sides decorated, yet the reward for three sides 
decorated is greater; this is not a mathematical decision, but it probably has to do with 
human appreciation of art.] 

The bar graph allows student to use experimental results to discuss probability, but they 
should also consider the theoretical probability of each result. This can be accomplished by 
constructing a tree diagram that shows the results after three throws; a D represents a 
decorated side, and a B represents a blank side: 

   

There are eight possible outcomes, as indicated by the number of elements in the third row. 
The path to each of those elements indicates one possible outcome; for example, the 
highlighted path shows a first throw of D, a second throw of B, and a third throw of B. 

An organized list could also be created. The list below shows the eight possible outcomes, 
which verify the results of the tree diagram: 

 

 

 

Because three sticks are thrown, and because there are two possible results with each 
stick (D or B), it makes sense that there would be 23 = 8 outcomes. 

To promote conceptual understanding, be sure to compare the items on the list to the 
outcomes from the tree diagram. For instance, show that the highlighted path is equivalent 
to DBB in the list. 

DDD DDB DBD BDD

BBD BDB DBB BBB
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Based on the list and tree diagram, students should realize that three decorated sides or no 
decorated sides occur, on average, only once out of every eight throws, whereas one or two 
decorated sides occur three times every eight throws. Ask students to compare these 
theoretical probabilities to the experimental results they obtained when playing the game. 

Finally, ask students, "On average, how many turns do you think it will take to complete a 
game?" Students can investigate this question by playing again and recording the number of 
turns, and then comparing their results with the rest of the class. Alternatively, if students are 
prepared for the mathematics, they can reason through the solution using basic ideas about 
expected value. [In eight turns, a player would be expected to get three decorated sides on 
one throw, two decorated sides on three throws, one decorated sides on three throws, and no 
decorated sides on one throw. 

Consequently, the player will move 1(10) + 3(3) + 3(1) + 1(5) = 27 stones in eight turns, or 
approximately 27 ÷ 8 = 3.375 stones per turn. At that rate, it will take 40 ÷ 3.375 = 11.85, or 
about 12, turns for a player to complete the circle. Of course, it will take more if the player is 
passed over and sent back to the starting point.] 

The Game of SKUNK  

In this lesson, students practice decision-making skills leading to a better understanding of 
choice versus chance and building the foundation of mathematical probability. This lesson is 
adapted from an article by Dan Brutlag, "Choice and Chance in Life: The Game of 
SKUNK," which appeared in Mathematics Teaching in the Middle School, Vol. 1, No. 1 
(April 1994), pp. 28-33.  

Instructional Plan  

Write the following questions on the chalkboard or overhead: 

  I might make more money if I was in business for myself; should I quit my job? 

  An earthquake might destroy my house; should I buy insurance? 

  My mathematics teacher might collect homework today; should I do it? 

Ask students to share their responses to each of these scenarios. Ask students why their 
responses may be different from their classmates. Ideally the class discussion will mirror 
some of the concepts which follow. 

Every day each of us must make choices like those described above. The choices we make 
are based on the chance that certain events might occur. We informally estimate the 
probabilities for events by using a variety of methods: looking at statistical information, 
using past experiences, asking other people's opinions, performing experiments, and using 
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mathematical theories. Once the probability for an event has been estimated, we can examine 
the consequences of the event and make an informed decision about what to do. 

Making the connection between choice and chance is basic to understanding the significance 
and usefulness of mathematical probability. We can help middle school students make this 
connection by giving them experiences wherein choice and change come into play followed 
by tasks that cause them to think about, and learn from, those experiences. 

The game of SKUNK presents middle-grade students with an experience that clearly 
involves both choice and chance. SKUNK is a variation on a dice game also known as "pig" 
or "hold'em." The object of SKUNK is to accumulate points by rolling dice. Points are 
accumulated by making several "good" rolls in a row but choosing to stop before a "bad" roll 
comes and wipes out all the points. SKUNK can be played by groups, by the whole class at 
once, or by individuals. The whole-class version is described following an explanation of the 
rules. 

 The Game of SKUNK 

To start the game each player makes a score sheet like this: 

S K U N K 

 

 

Each letter of SKUNK represents a different round of the game; play begins with the "S" 
column and continue through the "K" column. The object of SKUNK is to accumulate the 
greatest possible point total over five rounds. The rules for play are the same for each of the 
five rounds. 

 At the beginning of each round, every player stands. Then, a pair of dice is rolled. 
(Everyone playing uses that roll of the dice; unlike other games, players do not roll the 
dice for just themselves.) 

 A player gets the total of the dice and records it in his or her column, unless a "one" 
comes up. 

 If a "one" comes up, play is over for that round and all the player's points in that 
column are wiped out. 

 If "double ones" come up, all points accumulated in prior columns are wiped out as 
well. 

 If a "one" doesn't occur, the player may choose either to try for more points on the next 
roll (by continuing to stand) or to stop and keep what he or she has accumulated (by 
sitting down). 
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Note: If a "one" or "double ones" occur on the very first roll of a round, then that round is 
over and each player must take the consequences. 

 Playing SKUNK with the Whole Class 

The best way to teach SKUNK to the class is to play a practice game. You can use the 
following to simulate the rolling of number cubes by projecting the simulation onto the 
overhead or television screen. 

Draw a SKUNK score sheet on the chalkboard or overhead transparency on which to record 
dice throws. Have all students make their own score sheets on their own scrap paper. Have 
all students stand up next to their chairs. Either you or a student rolls the dice. Suppose a 
"four" and a "six come up, total 10. Record the outcome of the roll in the "S" column on the 
chalkboard: 

Score Record 

S 

10 

K U N K 

 

On the first roll, all the players get a total of the dice or a zero if any "ones" come up. Kerry 
and Lisa are standing up, so they also write "10" in their score sheets. 

Kerry 

S 

10 

 

K 

 

U 

 

N 

 

K 

Lisa 

S 

10 

K U N K 

After each roll, players may choose either to remain standing or to sit down. Those who are 
standing get the results of the next dice roll; those who sit down keep the score they have 
accumulated for that round regardless of future dice rolls. Once someone sits down, that 
person may not stand up again until the beginning of the next round. 

The sample game continues on the teacher sheet. 

Instead of focusing on a single class winner, more students will be drawn into thinking about 
a strategy for doing well in this game by emphasizing personal goals. When playing the 
game for the second and third time, ask students to focus on trying to better their own 
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previous score. After each game ask for a show of hands of those who did better than last 
time. 

 Thinking about SKUNK 

Although playing SKUNK is fun, thinking about SKUNK is essential for student 
understanding of the underlying concepts. In groups of two or three, students should 
complete the questions on the handout. 

Groups of students could organize whole-class experiments to find answers to problems 4, 5, 
6. As a class, share results and solutions to the questions posed. 

Suggested solutions and discussion points 

For question 1, the chance part of SKUNK is the dice roll and choice part is the decision to 
sit down or remain standing. 

Many games can be listed for question 2. Games of pure chance include Candy Land and 
bingo. Games involving almost pure choice, disregarding who goes first and your opponent's 
ability, include chess and tic-tac-toe. Most games, such as hearts, basketball, or Monopoly, 
involve both choice and chance. The game of Uno is mostly chance no matter what choices 
are made. But poker can be either mostly chance or mostly choice depending how is it 
played. Strategies are useful only in games that allow for choices. But even games that have 
choices can be mostly chance for a player who makes choices without any strategy. 

Question 3 can lead to class discussions that involve interesting probabilities and decisions 
from students' lives. Some events that a thirteen-year-old would ascribe mostly to chance 
include these: you find a $20 bill, you calculator is stolen, having a bad acne outbreak, your 
cousin becomes a famous musician, your best friend has to go to a different high school then 
you, and the like. Some typical events resulting from a thirteen-year-old's choices might 
include these: a girl dances with you because you asked her, you flunk a quiz because you 
didn't study, you get paid your allowance because you do your chores, and so on. 

Questions 4, 5, and 6 can be done either by experimenting or making theoretical arguments. 
For example, for question 5, dice could be rolled many times and the points noted. Then the 
points could be totaled and the average value per time calculated. One theoretical approach is 
to list the equally likely outcomes for rolling a pair of dice where SKUNK points are 
accumulated. Twenty-five equally likely outcomes yield points. Such a list of outcomes is 
shown in table 1. Rolls including a "one" are not shown because no points are accumulated 
on the rolls. 
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The average of all the equally likely values is 8. This value can be either calculated or 
observed from the symmetry of the table. 
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7. Solid Geometry 

 Three-dimensional space 

Polyhedra and Non-Polyhedra 

Sphere 

 

Three Dimensions 

  
It is called three-dimensional, or 3Dbecause there are three dimensions:width, 
depth and height.  

Simple Shapes 

Let us start with some of the simplest shapes: 

• Cube 

• Cuboid 

• Volume of a Cuboid 

Properties 

Solids have properties (special things about them), such as: 

• volume (think of how much water it could hold) 

• surface area (think of the area you would have to paint) 
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Polyhedra and Non-Polyhedra 

There are two main types of solids, "Polyhedra", and "Non-Polyhedra": 

     

Polyhedra : 
(they must 
have flat faces) 

 

Platonic Solids  

 

Prisms  

 

Pyramids  

Non-
Polyhedra: 
(if any surface 
is not flat) 

 

Sphere  

 

Torus  

 

Cylinder  

 

Cone  

 

Sphere 

Sphere Facts 

Notice these interesting things: 

 It is perfectly symmetrical 

  It has no edges or vertices (corners) 
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  It is not a polyhedron 

  All points on the surface are the same distance from the center 
 

And for reference: 

  Surface Area = 4 × π × r2 

  Volume = (4/3) × π × r3 

Largest Volume for Smallest Surface 

Of all the shapes, a sphere has the smallest surface area for a volume. Or put another way it 
can contain the greatest volume for a fixed surface area. 

Example: if you blow up a balloon it naturally forms a sphere because it is trying to hold as 
much air as possible with as small a surface as possible. Press the Play button to see. 

In Nature 

The sphere appears in nature whenever a surface wants to be as small as possible. Examples 
include bubbles and water drops, can you think of more? 

The Earth 

The Planet Earth, our home, is nearly a sphere, except that it is squashed a little at the poles. 

It is a spheroid, which means it just misses out on being a sphere because it isn't perfect in 
one direction (in the Earth's case: North-South) 
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8.  History of Matrices and determinants 
 

The beginnings of matrices and determinants go back to the second century BC although 
traces can be seen back to the fourth century BC. However it was not until near the end of 
the 17th Century that the ideas reappeared and development really got underway. 

It is not surprising that the beginnings of matrices and determinants should arise through the 
study of systems of linear equations. The Babylonians studied problems which lead to 
simultaneous linear equations and some of these are preserved in clay tablets which survive. 
For example a tablet dating from around 300 BC contains the following problem:- 

There are two fields whose total area is 1800 square yards. One produces grain at 
the rate of 2/3 of a bushel per square yard while the other produces grain at the rate 
of 1/2 a bushel per square yard. If the total yield is 1100 bushels, what is the size of 
each field. 

The Chinese, between 200 BC and 100 BC, came much closer to matrices than the 
Babylonians. Indeed it is fair to say that the text Nine Chapters on the Mathematical Art 
written during the Han Dynasty gives the first known example of matrix methods. First a 
problem is set up which is similar to the Babylonian example given above:- 

There are three types of corn, of which three bundles of the first, two of the second, 
and one of the third make 39 measures. Two of the first, three of the second and one 
of the third make 34measures. And one of the first, two of the second and three of the 
third make 26 measures. How many measures of corn are contained of one bundle of 
each type? 

Now the author does something quite remarkable. He sets up the coefficients of the system 
of three linear equations in three unknowns as a table on a 'counting board'. 

   1   2   3 
   2   3   2 
   3   1   1 
  26  34  39 
 
Our late 20th Century methods would have us write the linear equations as the rows of the 
matrix rather than the columns but of course the method is identical. Most remarkably the 
author, writing in 200 BC, instructs the reader to multiply the middle column by 3 and 
subtract the right column as many times as possible, the same is then done subtracting the 
right column as many times as possible from 3 times the first column. This gives 
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   0   0   3 
   4   5   2 
   8   1   1 
  39  24  39 
 
Next the left most column is multiplied by 5 and then the middle column is subtracted as 
many times as possible. This gives 

   0   0   3 
   0   5   2 
  36   1   1 
  99  24  39 
 
from which the solution can be found for the third type of corn, then for the second, then the 
first by back substitution. This method, now known as Gaussian elimination, would not 
become well known until the early 19th Century. 

Cardan, in Ars Magna (1545), gives a rule for solving a system of two linear equations 
which he calls regula de modo and which [7] calls mother of rules ! This rule gives what 
essentially is Cramer's rule for solving a 2  2 system although Cardan does not make the 
final step. Cardan therefore does not reach the definition of a determinant but, with the 
advantage of hindsight, we can see that his method does lead to the definition. 

Many standard results of elementary matrix theory first appeared long before matrices were 
the object of mathematical investigation. For example de Witt in Elements of curves, 
published as a part of the commentaries on the 1660 Latin version of Descartes' Géométrie 
, showed how a transformation of the axes reduces a given equation for a conic to canonical 
form. This amounts to diagonalising a symmetric matrix but de Witt never thought in these 
terms. 

The idea of a determinant appeared in Japan and Europe at almost exactly the same time 
although Seki in Japan certainly published first. In 1683 Seki wrote Method of solving the 
dissimulated problemswhich contains matrix methods written as tables in exactly the way 
the Chinese methods described above were constructed. Without having any word which 
corresponds to 'determinant' Seki still introduced determinants and gave general methods for 
calculating them based on examples. Using his 'determinants' Seki was able to find 
determinants of 2  2, 3  3, 4  4 and 5  5 matrices and applied them to solving 
equations but not systems of linear equations. 
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Rather remarkably the first appearance of a determinant in Europe appeared in exactly the 
same year 1683. In that year Leibniz wrote to de l'Hôpital. He explained that the system of 
equations 

   10 + 11x + 12y = 0 
   20 + 21x + 22y = 0 
   30 + 31x + 32y = 0 
 
had a solution because 

10.21.32 + 11.22.30 + 12.20.31 = 10.22.31 + 11.20.32 + 12.21.30 

which is exactly the condition that the coefficient matrix has determinant 0. Notice that here 
Leibniz is not using numerical coefficients but 

two characters, the first marking in which equation it occurs, the second marking 
which letter it belongs to. 

Hence 21 denotes what we might write as a21. 

Leibniz was convinced that good mathematical notation was the key to progress so he 
experimented with different notation for coefficient systems. His unpublished manuscripts 
contain more than 50 different ways of writing coefficient systems which he worked on 
during a period of 50 years beginning in 1678. Only two publications (1700 and 1710) 
contain results on coefficient systems and these use the same notation as in his letter to de 
l'Hôpital mentioned above. 

Leibniz used the word 'resultant' for certain combinatorial sums of terms of a determinant. 
He proved various results on resultants including what is essentially Cramer's rule. He also 
knew that a determinant could be expanded using any column - what is now called the 
Laplace expansion. As well as studying coefficient systems of equations which led him to 
determinants, Leibniz also studied coefficient systems of quadratic forms which led naturally 
towards matrix theory. 

In the 1730's Maclaurin wrote Treatise of algebra although it was not published until 1748, 
two years after his death. It contains the first published results on determinants proving 
Cramer's rule for 2  2 and 3  3 systems and indicating how the 4  4 case would work. 
Cramer gave the general rule for n  n systems in a paper Introduction to the analysis of 
algebraic curves (1750). It arose out of a desire to find the equation of a plane curve 
passing through a number of given points. The rule appears in an Appendix to the paper but 
no proof is given:- 

One finds the value of each unknown by forming n fractions of which the common 
denominator has as many terms as there are permutations of n things. 
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Cramer does go on to explain precisely how one calculates these terms as products of certain 
coefficients in the equations and how one determines the sign. He also says how the n 
numerators of the fractions can be found by replacing certain coefficients in this calculation 
by constant terms of the system. 

Work on determinants now began to appear regularly. In 1764 Bezout gave methods of 
calculating determinants as did Vandermonde in 1771. In 1772 Laplace claimed that the 
methods introduced by Cramer and Bezout were impractical and, in a paper where he studied 
the orbits of the inner planets, he discussed the solution of systems of linear equations 
without actually calculating it, by using determinants. Rather surprisingly Laplace used the 
word 'resultant' for what we now call the determinant: surprising since it is the same word as 
used by Leibniz yet Laplace must have been unaware of Leibniz's work. Laplace gave the 
expansion of a determinant which is now named after him. 

Lagrange, in a paper of 1773, studied identities for 3  3 functional determinants. However 
this comment is made with hindsight since Lagrange himself saw no connection between his 
work and that of Laplace and Vandermonde. This 1773 paper on mechanics, however, 
contains what we now think of as the volume interpretation of a determinant for the first 
time. Lagrange showed that the tetrahedron formed by O(0,0,0) and the three 
points M(x,y,z), M'(x',y',z'), M"(x",y",z") has volume 
1/6 [z(x'y" - y'x") + z'(yx" - xy") + z"(xy' - yx')]. 

The term 'determinant' was first introduced by Gauss in Disquisitiones rithmeticae (1801) 
while discussing quadratic forms. He used the term because the determinant determines the 
properties of the quadratic form. However the concept is not the same as that of our 
determinant. In the same work Gauss lays out the coefficients of his quadratic forms in 
rectangular arrays. He describes matrix multiplication (which he thinks of as composition so 
he has not yet reached the concept of matrix algebra) and the inverse of a matrix in the 
particular context of the arrays of coefficients of quadratic forms. 

Gaussian elimination, which first appeared in the text Nine Chapters on the Mathematical 
Art written in 200 BC, was used by Gauss in his work which studied the orbit of the asteroid 
Pallas. Using observations of Pallas taken between 1803 and 1809, Gauss obtained a system 
of six linear equations in six unknowns. Gauss gave a systematic method for solving such 
equations which is precisely Gaussian elimination on the coefficient matrix. 

It was Cauchy in 1812 who used 'determinant' in its modern sense. Cauchy's work is the 
most complete of the early works on determinants. He reproved the earlier results and gave 
new results of his own on minors and adjoints. In the 1812 paper the multiplication theorem 
for determinants is proved for the first time although, at the same meeting of the Institut de 
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France, Binet also read a paper which contained a proof of the multiplication theorem but it 
was less satisfactory than that given by Cauchy. 

In 1826 Cauchy, in the context of quadratic forms in n variables, used the term 'tableau' for 
the matrix of coefficients. He found the eigenvalues and gave results on diagonalisation of a 
matrix in the context of converting a form to the sum of squares. Cauchy also introduced the 
idea of similar matrices (but not the term) and showed that if two matrices are similar they 
have the same characteristic equation. He also, again in the context of quadratic forms, 
proved that every real symmetric matrix is diagonalisable. 

Jacques Sturm gave a generalisation of the eigenvalue problem in the context of solving 
systems of ordinary differential equations. In fact the concept of an eigenvalue appeared 80 
years earlier, again in work on systems of linear differential equations, by D'Alembert 
studying the motion of a string with masses attached to it at various points. 

It should be stressed that neither Cauchy nor Jacques Sturm realised the generality of the 
ideas they were introducing and saw them only in the specific contexts in which they were 
working. Jacobi from around 1830 and then Kronecker and Weierstrass in the 1850's and 
1860's also looked at matrix results but again in a special context, this time the notion of a 
linear transformation. Jacobi published three treatises on determinants in 1841. These were 
important in that for the first time the definition of the determinant was made in an 
algorithmic way and the entries in the determinant were not specified so his results applied 
equally well to cases were the entries were numbers or to where they were functions. These 
three papers by Jacobi made the idea of a determinant widely known. 

Cayley, also writing in 1841, published the first English contribution to the theory of 
determinants. In this paper he used two vertical lines on either side of the array to denote the 
determinant, a notation which has now become standard. 

Eisenstein in 1844 denoted linear substitutions by a single letter and showed how to add and 
multiply them like ordinary numbers except for the lack of commutativity. It is fair to say 
that Eisenstein was the first to think of linear substitutions as forming an algebra as can be 
seen in this quote from his 1844 paper:- 

An algorithm for calculation can be based on this, it consists of applying the usual 
rules for the operations of multiplication, division, and exponentiation to symbolic 
equations between linear systems, correct symbolic equations are always obtained, 
the sole consideration being that the order of the factors may not be altered. 

The first to use the term 'matrix' was Sylvester in 1850. Sylvester defined a matrix to be an 
oblong arrangement of terms and saw it as something which led to various determinants 
from square arrays contained within it. After leaving America and returning to England in 
1851, Sylvester became a lawyer and met Cayley, a fellow lawyer who shared his interest in 
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mathematics. Cayley quickly saw the significance of the matrix concept and by 1853 Cayley 
had published a note giving, for the first time, the inverse of a matrix. 

Cayley in 1858 published Memoir on the theory of matrices which is remarkable for 
containing the first abstract definition of a matrix. He shows that the coefficient arrays 
studied earlier for quadratic forms and for linear transformations are special cases of his 
general concept. Cayley gave a matrix algebra defining addition, multiplication, scalar 
multiplication and inverses. He gave an explicit construction of the inverse of a matrix in 
terms of the determinant of the matrix. Cayley also proved that, in the case of 2  2 
matrices, that a matrix satisfies its own characteristic equation. He stated that he had checked 
the result for 3  3 matrices, indicating its proof, but says:- 

I have not thought it necessary to undertake the labour of a formal proof of the 
theorem in the general case of a matrix of any degree. 

That a matrix satisfies its own characteristic equation is called the Cayley-Hamilton theorem 
so its reasonable to ask what it has to do with Hamilton. In fact he also proved a special case 
of the theorem, the 4  4 case, in the course of his investigations into quaternions. 

In 1870 the Jordan canonical form appeared in Treatise on substitutions and algebraic 
equations by Jordan. It appears in the context of a canonical form for linear substitutions 
over the finite field of order a prime. 

Frobenius, in 1878, wrote an important work on matrices On linear substitutions and 
bilinear forms although he seemed unaware of Cayley's work. Frobenius in this paper deals 
with coefficients of forms and does not use the term matrix. However he proved important 
results on canonical matrices as representatives of equivalence classes of matrices. He cites 
Kronecker and Weierstrass as having considered special cases of his results in 1874 and 
1868 respectively. Frobenius also proved the general result that a matrix satisfies its 
characteristic equation. This 1878 paper by Frobenius also contains the definition of the rank 
of a matrix which he used in his work on canonical forms and the definition of orthogonal 
matrices. 

The nullity of a square matrix was defined by Sylvester in 1884. He defined the nullity 
of A, n(A), to be the largest i such that every minor of A of order n-i+1 is zero. Sylvester was 
interested in invariants of matrices, that is properties which are not changed by certain 
transformations. Sylvester proved that 

max{n(A), n(B)} ≤ n(AB) ≤ n(A) + n(B). 

In 1896 Frobenius became aware of Cayley's 1858 Memoir on the theory of matrices and 
after this started to use the term matrix. Despite the fact that Cayley only proved the Cayley-



65 
 

Hamilton theorem for 2  2 and 3  3 matrices, Frobenius generously attributed the result 
to Cayley despite the fact that Frobenius had been the first to prove the general theorem. 

An axiomatic definition of a determinant was used by Weierstrass in his lectures and, after 
his death, it was published in 1903 in the note On determinant theory. In the same year 
Kronecker's lectures on determinants were also published, again after his death. With these 
two publications the modern theory of determinants was in place but matrix theory took 
slightly longer to become a fully accepted theory. An important early text which brought 
matrices into their proper place within mathematics was Introduction to higher algebra by 
Bôcher in 1907. Turnbull and Aitken wrote influential texts in the 1930's and Mirsky's An 
introduction to linear algebra in 1955 saw matrix theory reach its present major role in as 
one of the most important undergraduate mathematics topic. 

Article by: J J O'Connor and E F Robertson 
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9. The Language of Mathematics  

 

Mathematical results are expressed in a foreign language. 

It is worth quoting at some length from Devlin's conclusion: 

A mathematical study of any one phenomenon has many similarities to a 
mathematical study of any other. There is an initial simplification, in which the 
key concepts are identified and isolated. Then those key concepts are analysed 
in greater and greater depth, as relevant patterns are discovered and 
investigated. There are attempts at axiomatisation. The level of abstraction 
increases. Theorems are formulated and proved. Connections to other parts of 
mathematics are uncovered or suspected. The theory is generalised, leading to 
the discovery of further similarities to - and connections with - other areas of 
mathematics." 

The Language of Mathematics 

The Language of Mathematics 

The Language of Mathematics was designed so we can write about: 

Things like Numbers, Sets, Functions, etc 

What we Do with those things (add, subtract, multiply, divide, join together, etc) 

Symbols 

Mathematics uses symbols instead of words: 

• There are the 10 digits: 0,1,2,...9 

• There are symbols for operations: + - x / 

• And symbols that "stand in" for values: x, y, ... 

• And many special symbols: = < ≤, ... 

Letter Conventions 

Often (but not always) letters have special uses: 

 Examples What they usually mean 

Start of the alphabet: a, b, c, ... constants (fixed values) 

From i to n: i, j, k, ..., n positive integers (for counting) 
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End of the alphabet: ... x, y, z variables (unknowns) 

Those are not rules, but they are often used that way. 

Example: 

 y = ax + b 

People would assume that a and b are fixed values, 

And that x is the one that changes, which in turn makes y change. 

Nouns, Verbs, Sentences 

Even though we don't actually use the words "noun", "verb", or "pronoun" in Mathematics, it 
might help you understand Mathematics by thinking about its similarities to English: 

Nouns 

Nouns could be fixed things, such as numbers, or expressions with numbers 

15 2(3-1/2) 42 

Verbs 

And the verb could be the equals sign "=", or maybe an inequality like < or > 

Pronouns 

in English pronouns are things that stand in for nouns (it, he, you, etc). In Mathematics they 
could be variables like x or y: 

5x-7 xy2 -3/x 

Sentence 

And they could be put together into a sentence like this: 

3x + 7 = 22 

(And we actually do use the word sentence in mathematics!) 

That is why, like other languages, the language of mathematics has its own grammar, syntax, 
vocabulary, word order, synonyms, negations, conventions, abbreviations, sentence 
structure, and paragraph structure. It has certain language features unparalleled in other 
languages (for example, theorems expressed using the letter "x" also apply to "b" and "2x-
5"). 

To teach essential language concepts which have been underemphasized in the usual 
mathematics curriculum. To emphasize the basic patterns of mathematical expression and 
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thought.   There are a limited number of frequently repeated patterns of expression and 
thought in Mathematics. This text identifies, isolates, and emphasizes the essential patterns, 
illustrating them in several subject areas of mathematics. 

There are a limited number of key vocabulary words from logic ("and", "or", "not", "if... 
then", "if and only if", "for all", and "there exists") which are frequently used in 
mathematics. 

Students will learn to read math. The text teaches how to read math well enough in order to 
learn math by reading. It sounds like a tall order, but it works! 

What is different about The Language of Mathematics? 

• Everything! 

• Constant emphasis of patterns of thought and expression which recur throughout 
mathematics 

• Thorough explanation of what makes mathematics "algebra"  and how to think "in 
algebra." 

• Emphasis on bringing the students up to a mathematical, abstract, level of expression 
and understanding 

• Emphasis on mathematical examples of sentences and reasoning (not logic of this sort: 
"If it's raining, then I will get wet...") 

• Emphasis on alternative ways to express the same information until students are 
comfortable with all the ways mathematical thoughts are expressed 

 logical equivalences 

 letter-switching 

 theorems which use "iff" 

 definitions 

 English v. mathematical expression 

 abbreviations, notation 

 Making implicit usages explicit 

• Little equation-solving until they have the ability to read the theorems which justify 
the steps (learning to read in order to learn is a major thrust of the text). This is not a 
calculation-oriented text.  

• Algebraic methods are justified (and students understand the justifications) 
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• Proofs are introduced near the end, after students have all the background they need. 

 

Index for Geometry 
Math terminology from plane and solid geometry. This includes basic triangle trigonometry 

as well as a few facts not traditionally taught in basic geometry. 

AA Similarity 

AAS Congruence 

Abscissa 

Accuracy 

Acute Angle 

Acute Triangle 

Adjacent 

Adjacent Angles 

Alternate Angles 

Alternate Exterior Angles 

Alternate Interior Angles 

Altitude 

Altitude of a Cone 

Altitude of a Cylinder 

Altitude of a Parallelogram 

Altitude of a Prism 

Altitude of a Pyramid 

Altitude of a Trapezoid 

Altitude of a Triangle 

Analytic Geometry 

Angle 

Angle Bisector 

Angle of Depression 

Angle of Elevation 

Annulus 

Antipodal Points 

Apex 

Apothem 

Arc of a Circle 

arccos 

Arccos 

arcsin 

Arcsin 

arctan 

Arctan 

Area of a Circle 

Area of a Convex Polygon 

Area of an Equilateral 
Triangle 

Area of a Kite 

Area of a Parallelogram 

 

Area of a Rectangle 

Area of a Regular Polygon 

Area of a Rhombus 

Area of a Sector of a Circle 

Area of a Segment of a 
Circle 

Area of a Trapezoid 

Area of a Triangle 

Arm of an Angle 

Arm of a Right Triangle 

ASA Congruence 

Axes 

Axis of a Cylinder 

Axis of Reflection 

Axis of Rotation 

Axis of Symmetry 

Base (Geometry) 

Base of an Isosceles 
Triangle 

Base of a Trapezoid 

Base of a Triangle 

Between 
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Bisect 

Bisector 

Box 

Cartesian Coordinates 

Cartesian Form 

Cartesian Plane 

Cavalieri’s Principle 

Center of Rotation 

Centers of a Triangle 

Central Angle 

Centroid 

Centroid Formula 

Ceva’s Theorem 

Cevian 

Chord 

Circle 

Circular Cone 

Circular Cylinder 

Circular Functions 

Circumcenter 

Circumcircle 

Circumference 

Circumscribable 

Circumscribed 

Circumscribed Circle 

Coincident 

Collinear 

Complement of an Angle 

Complementary Angles 

Composite 

Compression 

Compression of a 
Geometric Figure 

Compute 

Concave 

Concentric 

Concurrent 

Cone 

Cone Angle 

Congruence Tests for 
Triangles 

Congruent 

Consecutive Interior Angles 

Contrapositive 

Contraction 

Convex 

Coordinate Geometry 

Coordinate Plane 

Coordinates 

Coplanar 

Corresponding 

cos 

cos-1 

Cos-1 

cosine 

CPCFC 

CPCTC 

Cube 

Cube Root 

Cuboid 

Cylinder 

Decagon 

 

Degenerate 

Degree (angle measure) 

Diagonal of a Polygon 

Diameter 

Equation of a Line 

Equiangular Triangle 

Equidistant 

Equilateral Triangle 

Geometry 

Glide 

Glide Reflection 

Golden Mean 
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Diametrically Opposed 

Dihedral Angle 

Dilation 

Dilation of a Geometric 
Figure 

Dimensions 

Direct Proportion 

Direct Variation 

Directly Proportional 

Disk 

Distance Formula 

Distinct 

Dodecagon 

Dodecahedron 

Double Cone 

Edge of a Polyhedron 

Elliptic Geometry 

Euclidean Geometry 

Euler Line 

Euler's Formula (Polyhedra) 

Evaluate 

Exact Values of Trig 
Functions 

Exterior Angle of a Polygon 

Face of a Polyhedron 

Fibonacci Sequence 

Fixed 

Flip 

Formula 

Fractal 

Frustum of a Cone or 
Pyramid 

Geometric Figure 

Geometric Mean 

Geometric Solid 

Golden Ratio 

Golden Rectangle 

Golden Spiral 

Graph of an Equation or 
Inequality 

Great Circle 

Height 

Height of a Cone 

Height of a Cylinder 

Height of a Parallelogram 

Height of a Prism 

Height of a Pyramid 

Height of a Trapezoid 

Height of a Triangle 

Heptagon 

Hero’s Formula 

Heron’s Formula 

 

Hexagon 

Hexahedron 

HL Congruence 

HL Similarity 

Horizontal 

Hyperbolic Geometry 

Hypotenuse 

Icosahedron 

Isometry 

Isosceles Trapezoid 

Isosceles Triangle 

Kite 

Lateral Area 

Lateral Surface Area 

Lateral Surface/Face 

Law of Cosines 

Measure of an Angle 

Measurement 

Median of a Trapezoid 

Median of a Triangle 

Menelaus’s Theorem 

Mensuration 

Midpoint 

Midpoint Formula 
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Image of a Transformation 

Incenter 

Incircle 

Inradius 

Inscribed Angle in a Circle 

Inscribed Circle 

Interior 

Interior Angle 

Invariant 

Inverse Cosine 

Inverse Sine 

Inverse Tangent 

Law of Sines 

Leg of an Isosceles Triangle 

Leg of a Right Triangle 

Leg of a Trapezoid 

Line 

Line Segment 

Linear 

Linear Pair of Angles 

Locus 

Magnitude 

Major Arc 

Mean 

Minor Arc 

Minute 

Möbius Strip 

Negative Reciprocal 

n-gon 

No Slope 

Non-Adjacent 

Nonagon 

Noncollinear 

Non-Convex 

Non-Euclidean Geometry 

Number Line 

 

Oblique 

Oblique Cone 

Oblique Cylinder 

Oblique Prism 

Oblique Pyramid 

Obtuse Angle 

Obtuse Triangle 

Octagon 

Octahedron 

Octants 

One Dimension 

Opposite Reciprocal 

Ordered Pair 

Parallel Planes 

Parallel Postulate 

Parallelepiped 

Parallelogram 

Pentagon 

Perimeter 

Perpendicular 

Perpendicular Bisector 

Phi (Φ φ) 

Pi (Π π) 

Plane 

Plane Figure 

Plane Geometry 

Pre-Image of a 
Transformation 

Prism 

Proportional 

Pyramid 

Pythagorean Identities 

Pythagorean Theorem 

Pythagorean Triple 

Quadrangle 

Quadrants 

Quadrilateral 

Radian 

Radical 
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Ordered Triple 

Ordinate 

Origin 

Orthocenter 

Oval 

Pappus’s Theorem 

Parallel Lines 

Platonic Solids 

Point 

Point of Symmetry 

Polygon 

Polygon Interior 

Polyhedron 

Precision 

Radicand 

Radius of a Circle or Sphere 

Ray 

Rectangle 

Rectangular Coordinates 

Rectangular Parallelepiped 

Reflection 

Regular Dodecahedron 

 

Regular Hexahedron 

Regular Icosahedron 

Regular Octahedron 

Regular Polygon 

Regular Polyhedra 

Regular Prism 

Regular Pyramid 

Regular Right Prism 

Regular Right Pyramid 

Regular Tetrahedron 

Rhombus 

Riemannian Geometry 

Right Angle 

Right Circular Cone 

Right Circular Cylinder 

Right Cone 

Right Cylinder 

Right Regular Pyramid 

Right Square Prism 

Right Triangle 

Root of a Number 

Rotation 

SAA Congruence 

SAS Congruence 

SAS Similarity 

Scale Factor 

Scalene Triangle 

Secant Line 

Second 

Sector of a Circle 

Segment 

Segment of a Circle 

Self-Similarity 

Semicircle 

Side of a Polygon 

Similar 

Similarity Tests for 
Triangles 

sin 

sin-1 

Sin-1 

Sine 

Skew Lines 

Slant Height 

Slope of a Line 

SOHCAHTOA 

Solid 

Solid Geometry 

Sphere 

Square 

Square Root 
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Right Prism 

Right Pyramid 

Right Regular Prism 

Semiperimeter 

Shift 

Side of an Angle 

SSA 

SSS Congruence 

SSS Similarity 

Standard Position 

 

Stewart's Theorem 

Straight Angle 

Supplement 

Supplementary Angles 

Surd 

Surface 

Surface Area 

Symmetric 

Takeout Angle 

tan 

tan-1 

Tan-1 

Tangent (Trig Function) 

Tangent Line 

Tau (Τ τ) 

Tessellate 

Tetrahedron 

Theorem of Menelaus 

Theorem of Pappus 

Theta (Θ θ) 

Three Dimensional 
Coordinates 

Three Dimensions 

Torus 

Transformations 

Translation 

Transversal 

Trapezium 

Trapezoid 

Triangle 

Triangle Congruence Tests 

Triangle Inequality 

Triangle Similarity Tests 

Trig 

Trig Functions 

Trig Values of Special 
Angles 

Trigonometry 

Truncated Cone or Pyramid 

Truncated Cylinder or Prism

Two Dimensions 

Undecagon 

Undefined Slope 

Unit Circle 

Varignon Parallelogram of a 
Quadrilateral 

Vertex 

Vertical 

Vertical Angles 

Volume 

Washer 

x-intercept 

x-y Plane 

x-z Plane 

y-intercept 

y-z Plane 

z-intercept 

Zero Dimensions 

Zero Slope 
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Terminology of Units 

Name Examples Explanation 

Derived 
unit 

metres per second 
square centimetres 
litres per hour 
cubic kilometres 
metres per second per 
second 
watt 

A derived unit measures a quantity made from a combination 
of other quantities. For example, an object has a speed of 1 
km per hour (derived unit) if it travels 1 kilometre in one 
hour. 

Many everyday and scientific quantities require derived units, 
eg velocity and speed (distance per unit time); acceleration 
(velocity change per unit time); force (mass unit times 
acceleration unit); interest rate (money per year). 

SI unit or 
metric 
unit 

metre 
kilometre 
metres per second 
square metre 

Any unit in the "metric system" . These are all base-ten 
compatible (except where they involve time). 

SI stands for 'international system' in French (Système 
Internationale d'Unités) 

Standard 
unit 

metre (m) 
kilogram (kg) 
second (s) 

There are 7 units which are used to make the agreed SI units 
for all known physical quantities. For example, the newton, 
the unit for force is defined in terms of three of the standard 
units: kilograms, metres and seconds. 

There are only three standard units which are common in 
school mathematics - kg, m, s. Other standard units are for 
electric current (ampere), temperature (degrees kelvin), 
amount of substance (mole)and light intensity (candela). 

Formal 
unit 

hour 
degree Celsius 
degree (for angles) 
metre 
foot 

Any unit with an agreed definition across society. They 
include metric and imperial units. 

Informal 
unit 

the length of my foot 
the mass of a Lego block
time for a handclap 

A term used by teachers for impermanent units used to teach 
students the principles of measurement. 

Imperial 
unit 

foot 
ounce 
mile 
inch 
hour 

Any unit from the old British system (used in Australia 
before 1980s). 
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Abbreviations 

quantity to 
measure 

SI unit approved abbreviation 

length metre m 

mass kilogram kg 

time second s 

NOTE: Other abbreviations which are strictly not correct are used occasionally. 
Teachers should adhere to the standard abbreviations but accept other common forms. 

Common prefixes for SI units 

We can combine these basic units with prefixes to form a multiple unit of more 
convenient size. See the table below for some of these commonly used prefixes. 

prefix and 
symbol 

value and meaning example 

mega (M) 1 000 000  
one million 

a megalitre is one million litres 

kilo (k) 1 000 
one thousand 

a kilogram is one thousand grams 

deci (d) 0.1 
one tenth 

a decimetre is one tenth of a metre 

centi (c) 0.01 
one hundredth 

a centimetre is one hundredth of a metre 

milli (m) 0.001 
one thousandth 

a milligram is one thousandth of a gram 

micro ( µ) 0.000 0001 
one millionth 

a micrometre is one millionth of a metre. µ is a 
Greek letter, pronounced as 'mu'. 

Non SI-Units 

Some units not in the SI system have been retained because of their practical 
importance. In Australia, there is common usage of the following non-SI units: 
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Unit Definition Value 

minute 1 min = 60 s 60 s 

hour 1 hour = 3600 s 3600 s 

temperature 1 degree Celsius = 1 kelvin 1° C 

Strictly speaking, 'tonne, 'litre' and 'hectare' are metric but not SI units. (The 
alternative SI terms, which are not commonly used, are, Mkg, 1 dm3 and 10000 
m2, respectively). 

Key word summary: 

Addition Subtraction Multiplication Division 

sum 

plus 

and  

total 

increase 

more 

raise 

both 

combined 

in all 

altogether 

additional 

extra 

less than 

more than 

decrease 

difference 

reduce 

change 

lost 

nearer 

farther 

left 

remain 

fell 

dropped 

product 

of 

multiplied 

times 

as much 

by 

twice 

divide evenly 

cut 

split 

each 

every 

average 

equal pieces 

out of 

ratio 

shared 

quotient 

The classification of quadrilaterals is a mathematical topic that is often written about. 
Usually the writers show different ways of doing it , illustrating their system by using either 
a ‘tree’ approach or a Venn diagram . Most seem to conclude that any system is 
‘unsatisfactory’ in some way or other and, often, produce a new name for a shape in order to 
regularize the system. This might give some idea of why pupils can have difficulties at times 
in trying to understand what we are driving at. Looking at the definitions in nearly all major 
dictionaries and we see that: 
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a square is a rhombus is a parallelogram is a trapezium is a quadrilateral ( is a polygon) 

This map is one way of showing the development. 
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10.  Introduction to Inequalities 
 

Inequality tells you about the relative size of two values. 

Mathematics is not always about "equals"! Sometimes you only know that something is 
bigger or smaller 

Example: Alex and Billy have a race, and Billy wins! 

What do we know? 

We don't know how fast they ran, but we do know that Billy was faster than Alex: 

Billy was faster than Alex 

We can write that down like this: 

b > a 

(Where "b" means how fast Billy was, ">" means "greater than", and "a" means how fast 
Alex was) 

We call things like that inequalities (because they are not "equal") 

Greater or Less Than 

The two most common inequalities are: 

Symbol Words Example Use 

> greater than 5 > 2 

< less than 7 < 9 

They are easy to remember: the "small" end always points to the smaller number, like this: 

 

 

Greater Than Symbol: BIG > small 
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Example: Alex plays in the under 15s soccer. How old is Alex? 

We don't know exactly how old Alex is, because it doesn't say "equals" 

But we do know "less than 15", so we can write: 

Age < 15 

The small end points to "Age" because the age is smaller than 15. 

... Or Equal To! 

You can also have inequalities that include "equals", like: 

 

Symbol Words Example Use 

≥ greater than or equal to x ≥ 1 

≤ less than or equal to y ≤ 3 

 

Example: you must be 13 or older to watch a movie. 

The "inequality" is between your age and the age of 13. 

Your age must be "greater than or equal to 13", which would be written: 

Age ≥ 13 

Comparing Values 

Solving Inequalities 

Sometimes we need to solve Inequalities like these: 

 

Symbol Words Example 

> greater than x + 3 > 2 

< less than 7x < 28 

≥ greater than or equal to 5 ≥ x - 1 

≤ less than or equal to 2y + 1 ≤ 7 
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Solving 

Our aim is to have x (or whatever the variable is) on its own on the left of the inequality 
sign: 

Something like:   x < 5

or:   y ≥ 11

We call that "solved". 

How to Solve 

Solving inequalities is very like solving equations ... you do most of the same things ... 

... but you must also pay attention to the direction of the inequality. 

 
Direction: Which way the arrow "points" 

Some things you do will change the direction! 

< would become > 

> would become < 

≤ would become ≥ 

≥ would become ≤ 

Safe Things To Do 

These are things you can do without affecting the direction of the inequality: 

• Add (or subtract) a number from both sides 

• Multiply (or divide) both sides by a positive number 

• Simplify a side 

Example: 3x < 7+3 

You can simplify 7+3 without affecting the inequality: 

3x < 10 
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But these things will change the direction of the inequality ("<" becomes ">" for example): 

• Multiply (or divide) both sides by a negative number 

• Swapping left and right hand sides 

Example: 2y+7 < 12 

When you swap the left and right hand sides, you must also change the direction of the 
inequality: 

12 > 2y+7 

Here are the details: 

Adding or Subtracting a Value 

We can often solve inequalities by adding (or subtracting) a number from both sides (just as 
in Introduction to Algebra), like this: 

Solve: x + 3 < 7 

If we subtract 3 from both sides, we get: 

x + 3 - 3 < 7 - 3 

x < 4 

And that is our solution: x < 4 

In other words, x can be any value less than 4. 

What did we do? 

We went from this: 

  

To this: 
   

x+3 < 7 

  

x < 4 

         

And that works well for adding and subtracting, because if you add (or subtract) the same 
amount from both sides, it does not affect the inequality 
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Example: Alex has more coins than Billy. If both Alex and Billy get three more coins each, 
Alex will still have more coins than Billy. 

What If I Solve It, But "x" Is On The Right? 

No matter, just swap sides, but reverse the sign so it still "points at" the correct value! 

Example: 12 < x + 5 

If we subtract 5 from both sides, we get: 

12 - 5 < x + 5 - 5 

7 < x 

That is a solution! 

But it is normal to put "x" on the left hand side ... 

... so let us flip sides (and the inequality sign!): 

x > 7 

Do you see how the inequality sign still "points at" the smaller value (7) ? 

And that is our solution: x > 7 

Note: "x" can be on the right, but people usually like to see it on the left hand side. 

Multiplying or Dividing by a Value 

Another thing we do is multiply or divide both sides by a value (just as in Algebra - 
Multiplying). 

But we need to be a bit more careful (as you will see). 

 
Positive Values 

Everything is fine if you want to multiply or divide by a positive number: 

Solve: 3y < 15 

If we divide both sides by 3 we get: 

3y/3 < 15/3 

y < 5 

And that is our solution: y < 5 
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Negative Values 

 
When you multiply or divide by a negative number  
you have to reverse the inequality. 

Why? 

Well, just look at the number line! 

For example, from 3 to 7 is an increase,  
but from -3 to -7 is a decrease. 

 

-7 < -3 7 > 3 

 

See how the inequality sign reverses (from < to >) ? 

Let us try an example: 

 

Solve: -2y <-8 

Let us divide both sides by -2 ... and reverse the inequality! 

-2y < -8 

-2y/-2 > -8/-2 

y > 4 

And that is the correct solution: y > 4 

 

(Note that I reversed the inequality on the same line I divided by the negative number.) 

So, just remember: 

When multiplying or dividing by a negative number, reverse the inequality 

Multiplying or Dividing by Variables 
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Here is another (tricky!) example: 

 

Solve: bx < 3b 

It seems easy just to divide both sides by b, which would give us: 

x < 3 

... but wait ... if b is negative we need to reverse the inequality like this: 

x > 3 

But we don't know if b is positive or negative, so we can't answer this one! 

 

To help you understand, imagine replacing b with 1 or -1 in that example: 

• if b is 1, then the answer is simply x < 3 

• but if b is -1, then you would be solving -x < -3, and the answer would be x > 3 

So: 

Do not try dividing by a variable to solve an inequality (unless you know the variable is 
always positive, or always negative). 

 

A Bigger Example 

 

Solve: (x-3)/2 < -5 

First, let us clear out the "/2" by multiplying both sides by 2. 

Because you are multiplying by a positive number, the inequalities will not change. 

(x-3)/2 ×2 < -5 ×2   

(x-3) < -10 

Now add 3 to both sides: 

x-3 + 3 < -10 + 3 

x < -7 

And that is our solution: x < -7 
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Two Inequalities At Once! 

How could you solve something where there are two inequalities at once? 

Solve: 

-2 < (6-2x)/3 < 4 

First, let us clear out the "/3" by multiplying each part by 3: 

Because you are multiplying by a positive number, the inequalities will not change. 

-6 < 6-2x < 12 

Now subtract 6 from each part: 

-12 < -2x < 6 

Now multiply each part by -(1/2). 

Because you are multiplying by a negative number, the inequalities change direction. 

6 > x > -3 

And that is the solution! 

But to be neat it is better to have the smaller number on the left, larger on the right. So let us 
swap them over (and make sure the inequalities point correctly): 

-3 < x < 6 

  

Summary 

• Many simple inequalities can be solved by adding, subtracting, multiplying or dividing 
both sides until you are left with the variable on its own. 

• But these things will change direction of the inequality: 

• Multiplying or dividing both sides by a negative number 

• Swapping left and right hand sides 

• Don't multiply or divide by a variable (unless you know it is always positive or always 
negative) 
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11. Co-ordinate Geometry – Distance and Midpoint (Teacher’s note) 

 
Question: 

How do you determine the distance between two points on a coordinate plane? 

How do you determine the midpoint between two points on a coordinate plane? 

 

Launch: 

1.   Find the distance between A and B on the number line below.  Explain at least  two 
ways you could find this distance.   Try to find more than two.  In counting, watch for 
students who count tick marks instead of spaces.  or B-AA B+  

 

 

 

2.   Find the midpoint of AB  on the number line above.  Explain at least two ways you 
could find the midpoint. Again emphasize at least two ways.  Make connection with 
average. 

3.   Find the length of AB  in the right triangle above.  Pythagorean 
Theorem is covered in middle school.  Discuss difference between exact 
answer and approximation. 

  

 

Investigation: 

Tracy wants to visit Amy for her birthday.  She decides to walk to the Corner 
Store and then pass Abby’s Book Store on the way in order to purchase a 
present.  Coming home she will take the shortcut through the park and past 
the pond.  

1.    If each unit on the grid represents one block, how many blocks will she walk going to 
Amy’s?  How many blocks will she walk going home? 
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12

10

8

6

4

2

-2

5 10 15 20

P

State the coordinates of
Tracy (__,__)

Amy   (__,__)

Book Store  (__,__)

Pond  (Point P) (__,__)

Pond

Tracy Corner Store

Amy

Abby's Book Store

 

2. Explain how you computed the distance for both trips – coming and going.  Give at 
least two ways of computing the distances. 

3. As Tracy is walking home through the field, she stops to dangle her feet in the pond 
that is exactly half way between Amy and Tracy’s house.  Give the coordinates of the 
pond.  Explain how you found these coordinates.  Multiple explanations. 

4.   A surveyor must determine the distance around a triangle formed by three towns. He 
put a grid over the map to help him determine these measurements as shown below.  
The axes are labeled in miles.  Can you help the surveyor find the distance between 
each town?  Maybe the dotted lines that form a right triangle will help you.  Explain 
how you found these distances.Teacher could encourage them to draw more right 
triangles with dotted lines. 

                 

12

10

8

6

4

2

-2

-4

-5 5 10 15

A:(1,1)

C:(16,9)

B:(6,11)
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A (a,b)

B (c,d)

5. A shopping center is to be built midway between Towns A and C.  Use the coordinates 
of A and C to find the coordinates for the shopping center.  Explain how you found the 
mid-point. 

6. Generalize how to find the distance between A and B below?  Students should use the 
Pythagorean Theorem to develop the Distance Formula.  May need to ask some leading 
questions but encourage students to develop this on their own. 

 

 

 

 

 

    

   

  

Look back at how you found the coordinates of the pond in the first problem.  Can you 

generalize this procedure and find the mid-point of segment AB  above?  Students should 
end with a formula for mid-point and distance. 

Conclusions: 

Write a formula (or procedure) to determine the distance between points (x1, y1) and (x2, y2).  
Students should be able to use their own procedure as long as they can explain it carefully.  

2 2
2 1 2 1( ) ( )d x x y y= − + −  

Write a formula to determine the midpoint of the segment with endpoints (x1, y1) and  

(x2, y2).  Students should be able to use their own procedure as long as they can explain it 

carefully.  1 2 1 2( , ) ( , )
2 2

x x y yM x y + +
=  

In Class Problems: 

1. Find the distance between (-8, 7) and (12, -9). 

2. Find the midpoint of the segment with endpoints (-8, 7) and (12, -9). 
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3. Three vertices of a triangle are X(2, 2), Y(5, 6) and Z(7, 2).  Is the triangle equilateral, 
scalene, or isosceles?  Students may need a quick reminder here. 

 

4. The point (9, -4) is the midpoint of a segment.  One endpoint of the segment is located 
at (-8, 2).  Find the other endpoint. 

Closure: (Explain in full sentences.) 

How do you determine the distance between two points on a coordinate plane? 

How do you determine the midpoint between two points on a coordinate plane? 

 

Homework: 

1. Find the distance between the given points:  Teacher could add one or two involving 
fractions or decimals. 

a. (6,20) and (0, -8) 

b. (-1, -1) and (-9, -11) 

2. A surveyor locates the water well at (2,-3).  The farmer need to pipe this water to the 
cattle pond at (10.4,11.2).  Sketch these two locations and find the length of the pipe.  
Assume the grid is marked in miles. 
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3. Find the midpoint of the segments with the given endpoints: 

a. (4, -12) and (-6, 4) 

b. (18, 28) and (-7, 15) 

4. Find the other endpoint of a line segment with the given midpoint and endpoint: 

a. midpoint (6, -1); endpoint (-9,0) 

b. midpoint (-8, -8); endpoint (12, 13) 

5. How is the distance formula related to the Pythagorean Theorem? 

6. Prove/verify that the midpoint of the hypotenuse of a right triangle is equidistant from 
each of the three vertices.  Problem 5 and 6 could wait till next day and teacher could 
give examples if they choose.  These should also lead to a discussion of “prove,” 
“verify,” “counterexample,” etc. 

7. Find the equation of the line that is the perpendicular bisector of the segment with 
endpoints (-4, 4) and (6, 2).  Students have had linear functions in grade 8.  Thus they 
should be able to do this.  Teacher may need to do a review of vocabulary. 
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12.   Plane Geometry, circle 
 

Plane Geometry 

Plane geometry is all about shapes like lines, circles and triangles ... shapes that can be 
drawn on a flat surface called a Plane (it is like on an endless piece of paper). 

If you like drawing, Geometry is for you! 

General 

                  

Angles 

 
 

Circle 

Here are some facts about circle. 

Pi 

 

Pi (the symbol is the Greek 

letter π) is: 

The ratio of 
the Circumference  
to the Diameter  
of a Circle. 
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In other words, if you measure the circumference, 
and then divide by the diameter of the circle you 

get the number π 

It is approximately equal to: 

3.14159265358979323846… 

The digits go on and on with no pattern. In 

fact, π has been calculated to over one trillion 
decimal places and still there is no pattern. 

 

Approximation 

A quick and easy approximation to π is 22/7 

22/7 = 3.1428571... 

But as you can see, 22/7 is not exactly right. In fact π is not equal to the ratio of any two 
numbers, which makes it an irrational number. 

To 100 Decimal Places 

Here is π with the first 100 decimal places: 

3.14159265358979323846264338327950288419716939937510 
58209749445923078164062862089986280348253421170679... 

Circle Sector and Segment 

Slices 

There are two main "slices" of a circle: 

• The "pizza" slice is called a Sector. 

• And the slice made by a chord is called 
a Segment. 
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Common Sectors 

The Quadrant and Semicircle are two special types of Sector: 

Quarter of a circle is called 
a Quadrant. 
 
Half a circle is called a Semicircle. 

 

  

Area of a Sector 

You can work out the Area of a 
Sector by comparing its angle 
to the angle of a full circle. 

Note: I am using radians for 
the angles. 

This is the reasoning: 

• A circle has an angle of 2π and an Area of: πr2 

• So a Sector with an angle of θ (instead of 2π) must have an area of: (θ/2π) × πr2 

• Which can be simplified to: (θ/2) × r2 
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Area of Sector = ½ × θ × r2   (when θ is in radians) 

Area of Sector = ½ × (θ × π/180) × r2   (when θ is in degrees) 

 

Arc Length 

By the same reasoning, the arc length (of a Sector or 
Segment) is: 

L = θ × r   (when θ is in radians) 

L = (θ × π/180) × r   (when θ is in degrees) 

 

 

 

Area of Segment 

The Area of a Segment is the area of a sector minus the 
triangular piece (shown in light blue here). 

There is a lengthy reason, but the result is a slight 
modification of the Sector formula: 

Area of Segment = ½ × (θ - sin θ) × r2   (when θ is in radians) 

Area of Segment = ½ × ( (θ × π/180) - sin θ) × r2   (when θ is in degrees) 
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Circle Theorems 

There are some interesting things about angles and circles that I want to share with you: 

 

Inscribed Angle 

First off, a definition: 

Inscribed Angle: an angle made from points sitting on the circle's circumference. 

  
A and C are "end points" 

B is the "apex point" 

Inscribed Angle Theorems 

An inscibed angle a° is half of the central angle 2a° 

 
(Called the Angle at the Center Theorem) 

 

And (keeping the endpoints fixed) ... 

... the angle a° is always the same, no matter where it is on the circumference: 
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Angle a° is the same. 

(Called the Angles Subtended by Same Arc Theorem) 

  

Example: What is the size of Angle POQ? (O is circle's center) 

 

Angle POQ = 2 × Angle PRQ = 2 × 62° = 124° 

  

Example: What is the size of Angle CBX? 

 

Angle ADB = 32° is the same angle as Angle XCB 

Now use angles of a triangle add to 180° in triangle BXC 

Angle CBX + Angle BXC + Angle XCB = 180° 

Angle CBX + 85° + 32° = 180° 

Angle CBX = 63° 

 

 

 



98 
 

Angle in a Semicircle 

An angle inscribed in a semicircle is always a right angle: 

 
(The end points are either end of a circle's diameter, 

the apex point can be anywhere on the circumference.) 

 

 

Why? Because: 

The inscribed angle 90° is half of the central angle 180°

(Using "Angle at the Center Theorem" above) 

 

 

 

 

 

Another Good Reason Why 
It Works 

We could also rotate the 
shape around 180° to make 
a rectangle! 

It is a rectangle, because all 
sides are parallel, and both 
diagonals are equal. 

And so its internal angles 
are all right angles (90°). 

  



99 
 

 
So there you go! No matter where that angle is  

on the circumference, it is always 90° 

 

 

Example: What is the size of Angle BAC? 

The Angle in the Semicircle Theorem tells us that Angle 
ACB = 90° 

Now use angles of a triangle add to 180° to find Angle 
BAC: 

Angle BAC + 55° + 90° = 180° 

Angle BAC = 35° 

  

 

Cyclic Quadrilateral 

A "Cyclic" Quadrilateral has every vertex on a circle's 
circumference:
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A Cyclic Quadrilateral's opposite angles add to 180°: 

• a + c = 180° 

• b + d = 180° 

 

Example: What is the size of Angle WXY? 

 

Opposite angles of a cyclic quadrilateral add to 180° 

Angle WZY + Angle WXY = 180° 

69° + Angle WXY = 180° 

Angle WXY = 111° 

  

 

Tangent Angle 

A tangent is a line that just touches a circle at one 
point. 

It always forms a right angle with the circle's radius, 
as shown: 
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Area of a Circle by Cutting into Sectors 

  

Here is a way to find the formula for the area of a circle: 

 

 

Cut a circle into equal sectors (12 in this example) 

Divide just one of the sectors into two equal parts. You now have thirteen sectors – number 
them 1 to 13: 

 

Rearrange the 13 sectors like this: 
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Which resembles a rectangle: 

 

What are the (approximate) height and width of the rectangle? 

The height is the circle's radius: just look at sectors 1 and 13 above. When they were in 
the circle they were "radius" high. 

The width (actually one "bumpy" edge) is half of the curved parts along the circle's edge ... 
in other words it is about half the circumference of the circle. 

We know that: 

Circumference = 2 × π × radius 

And so the width is about: 

Half the Circumference = π × radius 

And so we have (approximately): 

 

Now we just multply the width by the height to find the area of the rectangle: 

Area = (π × radius) × (radius) 

= π × radius2 

Note: The rectangle and the "bumpy edged shape" made by the sectors are not an exact 
match. 

But we could get a better result if we divided the circle into 25 sectors (23 with an angle of 
15° and 2 with an angle of 7.5°). 
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And the more we divided the circle up, the closer we would get to being exactly right. 

Conclusion 

Area of Circle = π r2 

Activity: Garden Area 

Have you ever wondered what the area of your garden 
is? 

Let us try and find out! 

You will need a garden, a tape measure, pen and paper ... and your brains. 

I don't have a garden, so what can I do? 

If you don't have a garden, I'm sure a friend has one, or your relatives have one, so use theirs. 

 

How accurate should my measurements be? 

Try to measure to the nearest centimeter (or half-inch), so the error will be 
as small as possible. 

You should get a good estimate, as long as you are careful with your 
measuring. 

Is there a simple way to find the area of my garden? 

If your garden is a rectangle, then you have a simple calculation. You just have to measure 
its width and length and multiply them together: 

 

Rectangle: Area = W × L

• W = width 

• L = length 

But that makes this activity just too easy ...  
... so go find another garden with a more interesting shape! 

My garden is a difficult shape, so how can I find its area? 

Good! This activity just got interesting ... 
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It may be one of the shapes on the page Area of Plane Shapes, then you just have to decide 
which shape, make the measurements, and use the formula. 

But you could also break up your difficult shape into triangles: 

 
 

Then measure the base (b) and height (h) of each triangle:  

 

Write down each measurement carefully so you know which triangle it belongs to. 

Now go inside and calculate each area (using Area = ½b × h) and add them all up. 

But my garden is different ... 

... in fact it's not any shape at all ... it has some straight edges and some curved parts. What 
should I do? 

Maybe it looks something like this: 

 

You could try covering your garden with a grid of squares – these could be 1 metre squares 
or 1 foot squares, something like this: 
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How do I make a grid? 

Try using pegs in the ground and join them up with string. Make sure they are the right 
distance apart and all angles are right angles. 

How does this help? The grid and the outline of the garden don't match. There are lots of 
corners and curved parts. 

Count the squares! 

There are special methods talked about on the Area page. The simplest method is: 

• more than half a square counts as 1 

• less than half a square counts as 0 

 

 
An estimate for this area is 41 m2. This is just an example. Your garden will be different. 

(If your grid was 1 foot, then the area will be in square feet) 
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Why should I want to know the area of my garden? 

There might be lots of reasons: 

• You want to re-turf the garden. How much grass should you order? How much will it 
cost? 

• You want to plant the garden with tomato plants. These have to be planted a certain 
distance apart. How many plants could you plant? What will be your expected yield of 
tomatoes? 

• You want to hold a barbeque party. How many people could comfortably fit into your 
garden? 

 

You can now do Activity: Grass for the Garden as a project work ( as an Example )  

Project work  

Grass for the Garden 

You want to re-turf the garden 

Let us try and find out what it will cost! 

 

Your first step is to find the area. The Garden Area Activity shows you how. 

 

Area of Garden m2 (or ft2): 

 

Now, you have two choices: 

• buy seed (and enjoy watching the grass grow), or 

• buy turf (and get instant weed-free results)?  

Let us work out the cost of each. 

Note: I include sample values, but you should use your own garden area, and also find out the cost of 
seed and turf where you live. 
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Seed 

How much grass seed should I order?  

You've already calculated the area of your garden, so now you will have to find out how 
much seed will cover each square meter, or each square foot. 

This might also depend on which kind of grass seed you want to use, so you will have to 
decide that first. 

You could visit your local garden center or farm supply store and read the instructions on the 
seed packet, or ask the store keeper for advice. Write down your choice here: 

 

Type of Grass Seed: 

How Much Seed per m2 (or ft2): 

 

While you are at the store, collect some prices. 

 

Packet 
Size:

      

Cost:       

 
Now you've got all the information, what kind of calculation will you need to do?  

Example: The area of my garden is 41m2. 

I found out from the local garden centre that I will need 55g of seed for each m2. 
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So the total amount of seed I will need is: 

41 × 55g = 2,255g 

But the area calculation was only a rough estimate, so maybe I need to buy, say, 5% extra. 

That makes 2,255g × 105% = 2,368g 

Or about 2.4 kg 

Tip: Always order a little more than you need! 

Just in case your estimate is wrong, or some gets wasted. 

 

Suppose the garden center only sells seed in 500g or 1kg packets. How many packets will I 
need to buy, and which way will be the most economical? 

I could buy: 

• Five 500g packets 

• Three 500g packets and one 1kg packet 

• One 500g packet and two 1kg packets 

 

Which do you think would be the cheapest way of doing it? 

Maybe the third option would be the cheapest. It's usually more economical to buy larger 
quantities. 

But watch out! Sometimes they might sell the smaller quantity at a special rate as a special 
promotion. Also check out the prices of different brands to get the best bargain. 

Too  much? 

But won't that be too much seed?  

Yes, of course you will have some seed left over (unless you are very lucky), but you can 
keep some in case you need to reseed part of your lawn another time, or in case the birds ate 
some of the seed! 

 
How much will it cost? 

Once you know how many packets of seed you require and what sizes, you can calculate the 
cost of the seed. That's easy.  
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Example: A 500g packet of seed costs Rs 200 and a 1kg packet costs Rs. 350. 

 

I need one 500g packet, so 1 × 200 =  200

I need two 1kg packets, so 2 × 350 =  700

The total cost is:  900

  

Your Turn: 

Packet Size Quantity
Cost Per
Packet Total Cost

      

      

      

Grand Total:   

 

Note: you might have to do the calculations using square feet, and find out the costs of 
different sizes of packet in 1lb packets and 2lb packets. But the idea's the same. 

  

 

Turf 

Some people prefer to use turf instead of seed. It may be easier and quicker to lay, but will it 
cost more? 
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The calculation should be fairly simple. First of all, decide which kind of turf you need. 

Then all you need to know is the cost of 1m2 of turf (or 1ft2 of turf). Again, you should be 
able to find out this information from your local garden center or farm supply store. 

 

Example: I found out from the local garden center that turf costs Rs. 300 per m2 

I have an area of 41m2, but this was only a rough estimate, and I may lose some when cutting 
it to shape, say 10% extra. 

That's 41m2 × 110% = 45m2 

Then the cost of turfing my garden would be 45 × 300 = Rs. 13,500 

 

For me it costs about twice as much as seeding, but this is just an example. Try it for your 
own garden. 

 

Turf Area Cost per Area Total Cost 

      

 

Note: you might have to do the calculations using square feet, and find out the cost per 
1ft2 of turf. 

 

 Now you know the cost of both options, which do you chose? 

 

Your Choice: 

 

 I am finished ... what have I learned? 

You have learned about measuring, recording data, drawing, and calculating area, well done! 
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13. Trigonometric graphs  

 

Why study trigonometric graphs?  

The graphs in this section are probably the most commonly used in all areas of science and 
engineering. They are used for modeling many different natural and mechanical phenomena 
(populations, waves, engines, acoustics, electronics, UV intensity, growth of plants and 
animals, etc). 

The trigonometric graphs in this chapter are periodic, which means the shape repeats itself 
exactly after a certain amount of time. Anything that has a regular cycle (like the tides, 
temperatures, rotation of the earth, etc) can be modeled using a sine or cosine curve. 

 

In this chapter... 

1.  Graphs of y = a sin x and y = a cos x, talks about amplitude. Amplitude is a 
indication of how much energy a wave contains. 

2.  Graphs of y = a sin bx and y = a cos bx introduces the period of a trigonometric 
graph. 

3.  Graphs of y = a sin(bx+c) and y = a cos(bx+c) helps you to understand 
the displacement (or phase shift) of a trigonometric curve. 

4.  Graphs of tan x, cot x, sec x and csc x are not as commonly used in the study of 
periodic activity, but are used in some applications. 

5.  Applications of Trigonometric Graphs includes the interesting What are the 
frequencies of music notes?. 

6.  Composite Trigonometric Curves arise when we add more than one waveform. 

7.  Lissajous Figures are a special kind of composite trigonometric graph. 

 

Overview of Trigonometric Graphs 

Here's a movie that gives an overview of the concepts in this chapter. 

We begin the chapter with an examination of what amplitude means and the effect of the "a" 
variable in 1. Graphs of y = a sin x and y = a cos x » 
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The Sine Curve y = a sin t 

Let's investigate the shape of the curve y = a sin t and see what the concept of "amplitude" 
means. The sine curve occurs naturally when we are examining waves. 

Have a play with the following Flash interactive. Run the animation first (click "Start"). 
Then change the circle radius (which changes the amplitude of the sine curve) using the 
slider. Then run the animation again. 

The scale for this is radians. Remember that π radians is 180°, so in the graph, the value of 
3.14 on the t-axis represents 180° and 6.28 is equivalent to 360°. 

 

Did you notice: 

• That the shape of the sine curve forms a regular pattern (the curve repeats after the 
wheel has gone around once)? We say such curves are periodic. The period is the 
time it takes to go through one cycle and then start over again. 

• That in the interactive, when the radius of the circle was 50 units then the curve went 
up to 50 units and down to -50 units on the y-axis? This quantity of a sine curve is 
called the amplitude of the graph. This indicates how much energy is involved in 
the quantity being graphed. Higher amplitude means greater energy. 

• That the rotation angle in radians is the same as the time (in seconds, well 
approximately). See more on radians. All the graphs in this chapter deal with angles in 
radians. Radians are much more useful in engineering and science than degrees. 

 

Amplitude 

The  a in the expression y = a sin x represents the amplitude of the graph. It is an 
indication of how much energy the wave contains. 

The amplitude is the distance from the "resting" position (otherwise known as the mean 
value or average value) of the curve. In the interactive above, the amplitude can be varied 
from 10 to 100 units. 

Amplitude is always a positive quantity. We could write this using absolute value signs. For 
the curves y = a sin x, 

Amplitude = |a| 
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Graph of Sine x - with varying amplitudes 

 

 

We start with y = sin x. 

It has amplitude = 1 and period = 2π. 

 
 

 

 

Now let's look at the graph of y = 5 sin x. 

This time we have amplitude = 5 and period = 2π. (I have used a different scale on the y-
axis.) 
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And now for y = 10 sin x. 

Amplitude = 10  

and period = 2π. 

For comparison, and using the 
same y-axis scale, here are the 

graphs of p(x) = sin x,q(x) = 

5 sin x and r(x) = 10 sin x on 
the one set of axes. 

Note that the graphs have the 
same period (which is 2π) 
but different amplitude. 
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Graph of Cosine x - with varying amplitudes 

Now let's see what the graph of y = a cos x looks like. 

Similar to the sine interactive at the top of the page, you can change the amplitude using the 
slider. 

Did you notice ? 

• That the sine and cosine graphs are almost identical, except the cosine curve is shifted 
to the left by π/2 (= 1.57 = 90°)? 

 

Now let's have a look at the graph 
of y = cos x. 

We note that the amplitude = 1 
and period = 2π. 

Similar to what we did with  

y = sin x above, we now see the 
graphs of 

• p(x) = cos x 

• q(x) = 5 cos x 

• r(x) = 10 cos x 

 

on one set of axes, for comparison: 
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Note: For the cosine curve, just like the sine curve, the period of each graph is the same 
(2π), but the amplitude has changed. 

Exercises  

Sketch one cycle of the 
following without using a table 
of values! (The important thing is 
to know the shape of these 
graphs - not that you can join 
dots!) 

Each one has period 2π. We learn 
more about period in the next 
section Graphs of y = a sin bx. 

The examples use t as the 
independent variable. In 
electronics, the variable is most often t. 

1) i = sin t 
Answer 

We saw this curve above, 
except now we are using i for 

current and t for time. These 
are very common variables in 
trigonometry. 

Period = 2π 

Amplitude = 1 

2) v = cos t 
Answer 

Once again, we saw this curve 
above, except now we are 
using v for voltage and tfor time. 

Period = 2π 

Amplitude = 1 
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3)  i = 3 sin t 

Answer 

Period = 2π 

Amplitude = 3 

 

 

 

4)  E = - 4 cos t 

Answer 

The variable E is used for "electro-motive force", another term for voltage. 

 

 

Period = 2π 

Amplitude = 4 

Notice that: 

• The negative in front of the cosine has the effect of turning the cosine curve "upside 
down". That is, it is a mirror image in the horizontal t axis. 

• Amplitude is a positive number (it is a distance) 
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2.  Graphs of y = a sinb x and y = a cos bx 

by M. Bourne 

The b in both of the graph types 

• y = a sin bx 

• y = a cos bx 

affects the period ( or wavelength ) of the graph. The period is the distance ( or time ) that it 
takes for the sine or cosine curve to begin repeating again. 

The period is given by: 

 

Note: As b gets larger, the period decreases. 

 

Changing the period 

 

First, let’s look at the graph of y=10 cos x, which we learned about in the last section,sine 
and cosine curves. 

As we learned,the period is 2π 
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Now let’s look at y = 10 cos 3x. Note the 3 inside the cosine term. 

 

Notice that the period is different. (The amplitude is 10 in each example.) 

This time the curve starts to repeat itself at x=2π/3. 

This is consistent with the formula we met above : 

 

 

Now let’s view the 2 curves on the same set of axes. Note that both graphs have amplitude of 
10 units, but their period is different. 

 

 

 

 

 

 

 

Cosine graphs 

Let’s play with the graphs that we have just drawn. In this case, you can vary the period ( 
and the amplitude ) by using the sliders at the bottom. 
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You can also change the function to whatever you like.  

Answer  

Good to know………………. 

Remember , we are now operating using RADIANS Recall that:  

2π = 6.283185… 

Remember, we are now operating using RADIANS. Recall that: 2π=3600 

We only use radians here. 

Note : b tells us the number of cycles in each 2π. 

For  y = 10cos x, there is one cycle between 0 and 2π ( because b=1 ). 

For  y = 10 cos 3x, there are 3 cycles between 0 and 2π ( because b=3 ) .  

Flash interactive – Pistons and the Period of a Sine Curve  

Here’s another interactive that you can use to explore the concept of period and frequency. 
The frequency =1/period. We’ll see more on this below: 

The piston engine is the most commonly used engine in the world. Its motion can be 
described using a sine curve. 

1. Sketch 2 cycles of y=3 cos 8x. 

Answer 

Here, b = 8, so the period is 2π/8 = π/4. To draw 2 cycles, we will need to graph from 0 

to π/2 along the x-axis. 

           

Now for interest, let's see what it looks like from 0 to 2π. 
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2. Sketch 2 cycles of y= cos 10x. 

Answer 

In this example, b = 10, so the period is 2π/10 = π/5. To draw 2 cycles, we will need from 0 

to 2π/5 along the x-axis. 

 

Note that one cycle has period 2π/10 = 0.628 and there will be 10 cycles between 0 and 2π. 

 

3. Sketch 2 cycles of y= 5 sin 2πx. 

Answer 

In this example, b = 2π. So the period is 2π/2π = 1. 



122 
 

 

This time, we do not have any multiple of π in our horizontal scale. 

 

4. Sketch 2 cycles of y= 4 sin x/3 

Answer 

In this example, b = 1/3, so the period is 6π = 18.85. 

 

Defining Sine Curves using Frequency 

It is common in electronics to express the sin graph in terms of the frequency f as follows: 

Y= sin 2πft 

This is very convenient, since we don’t have to do any calculation to find the frequency ( 
like we were doing above ). The frequency, f , is normally measured in cycles / second, 
which is the same as Herz (Hz). 
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The period of the curve ( the time it takes to go from one crest to the next crest ) can be 
found easily once we know the frequency: 

 

The units for period are normally seconds. 

Example : 

Household voltage in the UK is alternating current, 240V with frequency 50 Hz. What is the 
equation describing this voltage? 

Answer 

The voltage could be described as: V = 240 sin 2π(50)t. 

The period of the voltage is 1/50 = 0.02 seconds. 

The graphs in this section are probably the most commonly used in all areas of science and 
engineering. They are used for modeling many different natural and mechanical phenomena 
(populations, waves, engines, acoustics, electronics, UV intensity, growth of plants and 
animals, etc). 

The trigonometric graphs in this chapter are periodic, which means the shape repeats itself 
exactly after a certain amount of time. Anything that has a regular cycle (like the tides, 
temperatures, rotation of the earth, etc) can be modeled using a sine or cosine curve. 

 

Music Example 

The frequency of a note in music depends on the period of the wave. If the frequency is high, 
the period is short; if the frequency is low, the period is longer  

 

Here is an 
interesting question which a student asked me recently. She wanted to know the frequencies 
of all the notes on a piano.  

A piano is tuned to A =440 Hz ( cycles/second ) and the other notes are evenly spaced, 12 
notes to each octave. A note an octave higher than A=440Hz has twice the frequency (880 
Hz ) and an octave lower than A = 440 Hz has half the frequency (220 Hz ) 

1. Sketch 2 cycles of y = 3 cos 8x. 

[You can use the Java applet above to help you understand how the sketch works.) 
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Answer 

Here,b=8, so the period is 2π/8=π/4. To draw 2 cycles,we will need to graph from 0 to π/2 
along the x-axis. 

 

Now for interest , let’s see what it looks like from 0 to 2π.  

 

Note that there are 8 cycles between 0 and 2π. 

Also, note that we started the graph at x=0, but we could have started anywhere. As long as 
we draw exactly 2 cycles, we are answering the question.  

2. Sketch 2 cycles of y=cos10x. 

Answer 

In this example, b=10, so the period is 2π /10= π/5.To draw 2 cycles, we will need from 0 to 
2π/5 along the x-axis.  
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Note that one cycle has period 2π /10=0.628 and there will be 10 cycles between 0 and 2π.  

3. Sketch 2 cycles of y=5sin2x. 

Answer: In this example, b=2π, So the period is 2π/2π =1.  

 

This time, we do not have any multiple of 2π in our horizontal scale. 
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14.   Some examples for practice 

 

Find the volume of the given prisms and cylinders. 
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11) A cylinder with a radius of 4 yd and a height  of 5 yd. 

12)    A square prism measuring 6 km along each edge of the base and 5 km tall. 

13)   A hexagonal prism 5 yd tall with a regular base  measuring 5 yd on each edge and an 
 apothem of length 4.3 yd. 

14) A trapezoidal prism of height 6 km.   The  parallel sides of the base have lengths 5 
km and 3 km. The other  sides of the base are each 2  km.   The  trapezoid's altitude 
measures 1.7 km.  

 

Answers 

1) 1407.4 km³2) 126 ft³  3) 210 cm³4)  880 in³ 

5)  314.2 in³   6 )  18 ft³ 7)  94.6 m³8) 30 mi³ 

9)  3801.3 ft³ 10) 270 km³ 11)  251.3 yd³ 12)   180 km³ 

13) 322.5 yd³14)  40.8 km³  
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Volumes of Solids 
 

Find the volume of each figure. Round to the nearest tenth. 

 

 



129 
 

 

 

 

17)  A cylinder with a radius of 3 cm and a height of 7 cm. 

18)  A cone with diameter 20 cm and a height of 20 cm. 
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19)  A cone with diameter 14 yd and a height of 14 yd. 

20)  A rectangular prism measuring 10 m and 7 m along the base and 12 m tall. 

 

 

Answers 

1)   15 yd³ 2)   10 mi³ 3)   15 yd³  4)   3.1 km³   5)   37.7 in³ 

6)   8 m³   7)   22.5 yd³  8)   0.7 in³  9)   1026 cm³10)  680 m³ 

11)  1200 m³   12)  1325.3 m³ 13)   13823 mi³  14)   250.3 mi³ 15)  836 in³ 

16)  1734 mi³  17)   197.9 cm³ 18)2094.4 cm³  19)718.4 yd³  20)840 m³ 
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Solving Two-Step Inequalities  

 

Solve each inequality and graph its solution. 
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133 
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Answer 

1) 

 

2)  

 

3) 

 

4) 

 

5) 
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6) 

 

7) 

 

8) 

 

9) 

 

10) 

 

11) 

 

12) 

 

13) 

 

14) 
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15) 

 

16) 
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